Dr. Gebhard Martin Dr. Yajnaseni Dutta

Exercises, Algebraic Geometry II – Week 1

Exercise 1. Fundamental Lemma of Homological Algebra (4 points) Let C be an Abelian category. Consider the commutative diagram of solid arrows

$$0 \longrightarrow A \xrightarrow{d_A^0} I^0 \xrightarrow{d_A^1} I^1 \xrightarrow{d_A^2} I^2 \xrightarrow{d_A^3} \dots$$
$$\downarrow^f \qquad \downarrow^f \quad \downarrow$$

where the first row is exact, the second row is an injective resolution of B, and $f : A \to B$ is a morphism in C. Show that the following hold:

- (1) There exist dotted arrows f^i making the diagram commute.
- (2) If f'^i is another collection of arrows making the diagram commute, then $(f^i)_{i=0}^{\infty}$ and $(f'^i)_{i=0}^{\infty}$ are *chain homotopic*, i.e., there exists a collection of morphisms $h^i: I^i \to J^{i-1}$ such that

$$f^{i} - f'^{i} = d^{i}_{B} \circ h^{i} + h^{i+1} \circ d^{i+1}_{A}.$$

Exercise 2. Injective resolutions of groups and modules (5 points) Let A be a ring and I an A-module.

- (1) Show that I is injective if for any ideal $\mathfrak{a} \subseteq A$, the induced map $\operatorname{Hom}_A(A, I) \to \operatorname{Hom}_A(\mathfrak{a}, I)$ is surjective.
- (2) Show that any *divisible* Abelian group G (i.e. such that the map $g \mapsto ng$ is surjective for all n > 0) is an injective object in Ab. Deduce that, in particular, \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are injective.
- (3) Show that $I(G) \coloneqq \prod_{J(G)} \mathbb{Q}/\mathbb{Z}$ is a divisible group, where $J(G) \coloneqq \operatorname{Hom}_{Ab}(G, \mathbb{Q}/\mathbb{Z})$.
- (4) Show that the natural map $G \to I(G), g \mapsto (f(g))_{f \in J(G)}$ is injective. Conclude that Ab has enough injectives.
- (5) Prove that Mod_A has enough injectives for every ring A.

Due 14.04.2022, 2pm

Exercise 3. Injective objects (3 points) Let C and D be Abelian categories.

- (1) Show that any product of injective objects in C is again injective.
- (2) Let $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ be additive functors such that F is exact and G is right-adjoint to F. Show that G sends injective objects to injective objects.

Exercise 4. Flasque sheaves (4 points)

A sheaf of Abelian groups \mathcal{F} on a topological space X is called *flasque* if for every inclusion of open sets $V \subseteq U \subseteq X$, the restriction map $\mathcal{F}(U) \to \mathcal{F}(V)$ is surjective. Show the following:

- (1) A constant sheaf on an irreducible topological space is flasque.
- (2) If

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$

is an exact sequence of sheaves and \mathcal{F}' is flasque, then for every open $U \subseteq X$, the induced sequence

$$0 \to \mathcal{F}'(U) \to \mathcal{F}(U) \to \mathcal{F}''(U) \to 0$$

is exact.

(Hint: Use Zorn's lemma.)

(3) If

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$

is an exact sequence of sheaves and if \mathcal{F}' and \mathcal{F} are flasque, then so is \mathcal{F}'' .

(4) If $f: X \to Y$ is a continuous map and \mathcal{F} is a flasque sheaf on X, then $f_*\mathcal{F}$ is flasque on Y.

The next exercise is not necessary for the understanding of the lectures at this point.

Exercise 5. An injective non-flasque quasi-coherent sheaf

Study TAG 0273 of the Stacksproject. It gives an example of a scheme X and an injective object in $\operatorname{QCoh}(X, \mathcal{O}_X)$ which is not flasque as a sheaf.