Dr. Gebhard Martin

Dr. Yajnaseni Dutta

Exercises, Algebraic Geometry II – Week 10

Exercise 46. *Mittag–Leffler* (4 points)

Let $(A_n) \coloneqq (\{A_i\}_{i \in I}, \{\rho_{ij}\}_{i,j \in I, i \geq j})$ be an inverse system of Abelian groups indexed by N. We say that (A_n) satisfies the *Mittag–Leffler condition* if, for each n, the sequence $\{\rho_{in}(A_i) \subseteq A_n | i \geq n\}$ of A_n becomes stationary for large i. For such an inverse system, define $A'_n \coloneqq \rho_{in}(A_i)$ for $i \gg 0$.

- (1) Define maps making the collection of A'_n into an inverse system indexed by N. Show that $\underline{\lim} A'_n \cong \underline{\lim} A_n$.
- (2) Show that inverse systems with surjective transition maps satisfy the Mittag–Leffler condition.
- (3) Let

$$0 \to (A_n) \to (B_n) \to (C_n) \to 0$$

be a short exact sequence of inverse systems of Abelian groups indexed by \mathbb{N} . Show that:

- (a) If (B_n) satisfies the Mittag–Leffler condition, so does (C_n) .
- (b) If (A_n) satisfies the Mittag–Leffler condition, then

$$0 \to \varprojlim A_n \to \varprojlim B_n \to \varprojlim C_n \to 0$$

is exact.

Exercise 47. Proper + quasi-finite = finite (4 points)

Let $f: X \to Y$ be a morphism of Noetherian schemes. Show that f is finite if and only if it is quasi-finite and proper.

Exercise 48. Connected components of fibers (4 points)

Let $f: X \to Y$ be a proper morphism of Noetherian schemes. Let $y \in Y$ be a point. Show that the connected components of X_y are in bijection with the maximal ideals in $(f_*\mathcal{O}_X)_y$.

Exercise 49. Analytic isomorphisms (4 points)

Let X and Y be varieties over an algebraically closed field k. We say that a closed point $x \in X$ is analytically isomorphic to $y \in Y$ if there exists an isomorphism of k-algebras $\mathcal{O}_{X,x}^{\wedge} \cong \mathcal{O}_{Y,y}^{\wedge}$.

- (1) Show that any two closed points on smooth varieties of the same dimension are analytically isomorphic.
- (2) Show that if two closed points on curves are analytically isomorphic, then they have the same δ -invariant (see Exercise 29).

(You may use that normalization commutes with completion in this setting.)

Due 23.06.2023, 2pm

A closed point $x \in X$ is called *hypersurface singularity*, if there exists $f \in k[[x_1, \ldots, x_n]]$ such that $\mathcal{O}_{X,x}^{\wedge} \cong k[[x_1, \ldots, x_n]]/(f)$. We can write $f = \sum f_r$ with f_r homogeneous of degree r. The smallest r with $f_r \neq 0$ is called *multiplicity* of $x \in X$.

- (3) Show that two analytically isomorphic hypersurface singularities have the same multiplicity.
- (4) Let $x \in X$ be a hypersurface singularity of multiplicity r of a curve X (we call such a singularity a *planar curve singularity*). Assume that $\mathcal{O}_{X,x}^{\wedge} \cong k[[x,y]]/(f)$ with $f = \sum_{i=r}^{\infty} f_i$ such that $f_r = g_s h_t$ for g_s and h_t homogeneous without common factors. Show that there are formal power series $g = \sum_{i=s}^{\infty} g_i, h = \sum_{i=t}^{\infty} h_i \in k[[x,y]]$ such that f = gh. Conclude that a planar curve singularity of multiplicity 2 such that f_2 is not a square is analytically isomorphic to $(x, y) \in \text{Spec } k[x, y]/(xy)$.

The next exercise is not necessary for the understanding of the lectures at this point.

Exercise 50. Classification of planar curve singularities of multiplicity 2 (+ 4 extra points) Let k be an algebraically closed field of characteristic different from 2. Show that, for every planar curve singularity $x \in X$ of multiplicity 2, there exists an $n \ge 2$ such that $x \in X$ is analytically isomorphic to $(x, y) \in \text{Spec } k[x, y]/(y^2 - x^n)$.

(Hint: Look up the Weierstrass preparation theorem for complete Noetherian local rings)