Exercises, Algebraic Geometry II – Week 12

Exercise 56. \mathbb{P}^n -fibrations (4 points)

Let $f : X \to Y$ be a projective flat morphism of Noetherian schemes. Assume that Y is integral and all geometric fibers are isomorphic to projective *n*-space.

- (1) Show that f is the \mathbb{P}^n -bundle associated to a locally free sheaf on Y if and only if there exists an invertible sheaf \mathcal{L} on X that restricts to $\mathcal{O}(1)$ on all geometric fibers of f.
- (2) Conclude that if n = 1 and Y is regular and admits an ample invertible sheaf, then $X \cong \mathbb{P}(\mathcal{E})$ over Y for some locally free sheaf \mathcal{E} of rank 2 if and only if f has a section.

Exercise 57. Tsen's theorem and C_1 -fields (4 points)

A field k is called C_1 if every homogeneous polynomial $f \in k[x_1, \ldots, x_n]$ of degree d < n has a non-trivial zero in k^n .

- (1) Show that every finite field extension of a C_1 -field is C_1 .
- (2) Show that if k is algebraically closed, then k(x) is C_1 .
- (3) Let $f: X \to Y$ be a projective flat morphism of schemes over an algebraically closed field k. Assume that Y is a smooth projective curve over k and that all geometric fibers of f are isomorphic to \mathbb{P}^1 . Show that there exists a locally free sheaf \mathcal{E} of rank 2 on Y such that $X \cong \mathbb{P}(\mathcal{E})$ over Y.

Exercise 58. Hodge bundle (4 points)

Let $f: X \to Y$ be a proper flat morphism of Noetherian schemes. Assume that the fibers of f are connected smooth curves of genus g. Show that $R^1 f_* \mathcal{O}_X$ is locally free of rank g.

(Using relative duality, one can also show that $R^1 f_* \mathcal{O}_X \cong f_* \Omega_{X/Y}$.)

Exercise 59. *Rigidity* (4 points)

Let k be a field and let X, Y, and Z be varieties over k. Let $f: X \to Y$ and $g: X \to Z$ be proper morphisms such that $f_*\mathcal{O}_X = \mathcal{O}_Y$ and such that g contracts every fiber of f (i.e. such that $g(f^{-1}(y))$ is a point for all $y \in Y$). Show that there exists a morphism $h: Y \to Z$ such that $h \circ f = g$.

(Hint: Consider the image of $(f,g): X \to Y \times_{\text{Spec } k} Z$.)

Due 07.07.2023, 2pm

The next exercise is not necessary for the understanding of the lectures at this point.

Exercise 60. The Jouanolou trick (+ 4 extra points)

Let k be an algebraically closed field. Consider the set Y of all matrices $A \in M_{n+1}(k)$ of rank one satisfying $A^2 = A$.

- (i) Show that Y is the set of closed points of an affine variety over k such that the morphism $\pi: Y \to \mathbb{P}^n_k, A \mapsto \operatorname{Im}(A)$ is a well-defined morphism of schemes.
- (ii) Show that the fibers of π are isomorphic to \mathbb{A}^n_k and that, in fact, π is a vector bundle.
- (iii) Conclude that for every quasi-projective variety X over k, there exists a vector bundle $\mathbb{V}(\mathcal{E}) \to X$ such that $\mathbb{V}(\mathcal{E})$ is an affine scheme.