Exercises, Algebraic Geometry II – Week 3

Exercise 11. Affine plane without origin revisited (4 points) Let k be a field and $Y = \mathbb{A}_k^2 = \operatorname{Spec} k[x, y]$ and let $X = Y \setminus \{(0, 0)\}$. Consider the open cover $\mathcal{U} = (D(x), D(y))$ of X. Show that there is an isomorphism of k-vector spaces

$$\check{H}^1_{\mathcal{U}}(X, \mathcal{O}_X) \cong \langle \{x^i y^j \mid i, j < 0\} \rangle_k.$$

(By Serre vanishing and the comparison results between Čech- and sheaf cohomology, this gives a new proof that X is not affine.)

Exercise 12. Picard group and cohomology of \mathcal{O}_X^{\times} (4 points)

Let (X, \mathcal{O}_X) be a ringed space and let $\mathcal{U} = (U_i)_{i \in I}$ be an open cover of X. Let $\operatorname{Pic}_{\mathcal{U}}(X) \subseteq \operatorname{Pic}(X)$ be the subgroup of the Picard group of X consisting of isomorphism classes of invertible sheaves \mathcal{L} such that there exist isomorphisms $\varphi_i : \mathcal{L}|_{U_i} \cong \mathcal{O}_{U_i}$ for all $i \in I$.

- (1) Show that the collection of $\varphi_j|_{U_i \cap U_j} \circ \varphi_i^{-1}|_{U_i \cap U_j}$ defines an element of $\check{H}^1_{\mathcal{U}}(X, \mathcal{O}_X^{\times})$ which depends only on the isomorphism class of \mathcal{L} (and not on the choice of φ_i).
- (2) Show that the induced map $\operatorname{Pic}_{\mathcal{U}}(X) \to \check{H}^1_{\mathcal{U}}(X, \mathcal{O}_X^{\times})$ is an isomorphism of groups.

(One can show that $\varinjlim \check{H}^1_{\mathcal{U}}(X, \mathcal{O}_X^{\times}) \cong H^1(X, \mathcal{O}_X^{\times})$, where the direct limit is taken over all open covers, ordered by refinement (see Hartshorne, Exercise III.4.4), which, combined with the results of this exercise, yields an isomorphism $\operatorname{Pic}(X) \cong H^1(X, \mathcal{O}_X^{\times})$)

Exercise 13. Class group of A_{n-1} (4 points) Let k be a field, $n \ge 1$, $Y = \operatorname{Spec} k[x, y, z]/(z^n - xy)$ and $X = Y \setminus \{(0, 0, 0)\}$.

(1) Show that

$$\operatorname{Pic}(D(x) \cap Y) = \operatorname{Pic}(D(y) \cap Y) = \operatorname{Pic}(D(xy) \cap Y) = 0.$$

(2) Use Exercise 12 to show that

$$\operatorname{Cl}(Y) \cong \operatorname{Pic}(X) \cong \mathbb{Z}/n\mathbb{Z}.$$

Exercise 14. A formula of Deligne (4 points) Let A be a Noetherian ring, X = Spec A, $\mathfrak{a} \subseteq A$ an ideal, and $U \coloneqq X \setminus V(\mathfrak{a}) \subseteq X$.

(1) Show that, for any A-module M, there is a natural isomorphism

$$\Gamma(U, \widetilde{M}) \cong \varinjlim_n \operatorname{Hom}_{\operatorname{Mod}_A}(\mathfrak{a}^n, M).$$

(Hint: Show directly or use the identification $\Gamma_{V(\mathfrak{a})}(X, \widetilde{M}) \cong \Gamma_{\mathfrak{a}}(M) \cong \varinjlim_{n} \operatorname{Hom}_{A}(A/\mathfrak{a}^{n}, M)$ where the first isomorphism follows fom AGI Exer. 41 (iv).)

Due 28.04.2023, 2pm

- (2) Conclude that if I is an injective A-module, then \widetilde{I} is a flasque sheaf on X.
- (3) Conclude that, on Noetherian schemes, sheaf cohomology can be calculated by rightderiving the functor $\Gamma(X, -) : \operatorname{QCoh}(X, \mathcal{O}_X) \to \operatorname{Ab}$.

The next exercise is not necessary for the understanding of the lectures at this point.

Exercise 15. Torsors and H^1 (+ 4 extra points)

Let X be a topological space and let \mathcal{G} be a sheaf of Abelian groups on X. A \mathcal{G} -torsor is a sheaf of sets \mathcal{F} on X together with a morphism of sheaves of sets $\rho : \mathcal{G} \times \mathcal{F} \to \mathcal{F}$ such that

- (a) For all $U \subseteq X$ open, $\rho(U)$ is an action of $\mathcal{G}(U)$ on $\mathcal{F}(U)$ (i.e. ρ is an action in Sh(X)).
- (b) For all $U \subseteq X$ open such that $\mathcal{F}(U) \neq \emptyset$, $\rho(U)$ is simply transitive.
- (c) For all $U \subseteq X$ open, there exists an open cover $U = \bigcup U_i$ such that $(\mathcal{F}|_{U_i}, \rho|_{U_i})$ is a trivial $\mathcal{G}|_{U_i}$ -torsor.

Here, a morphism of \mathcal{G} -torsors is a morphism of sheaves that is compatible with the action ρ and a \mathcal{G} -torsor is called *trivial* if is isomorphic to the torsor \mathcal{G} endowed with the action of left multiplication: $\mathcal{G} \times \mathcal{G} \to \mathcal{G}$.

- (1) Show that every morphism of \mathcal{G} -torsors is an isomorphism.
- (2) Show that a \mathcal{G} -torsor (\mathcal{F}, ρ) is trivial if and only if $\mathcal{F}(X) \neq \emptyset$.
- (3) Let $\operatorname{Ext}^1(\mathbb{Z}, \mathcal{G})$ be the set of isomorphism classes of extensions of sheaves

$$0 \to \mathcal{G} \to \mathcal{E} \to \underline{\mathbb{Z}} \to 0.$$

Show that the map

$$\operatorname{Ext}^{1}(\underline{\mathbb{Z}}, \mathcal{G}) \to H^{1}(X, \mathcal{G})$$
$$(0 \to \mathcal{G} \to \mathcal{E} \to \underline{\mathbb{Z}} \to 0) \mapsto \delta(1),$$

where $1 \in H^0(X, \underline{\mathbb{Z}})$, is a bijection.

(4) Given an extension

$$0 \to \mathcal{G} \to \mathcal{E} \xrightarrow{\varphi} \mathbb{Z} \to 0,$$

define $\mathcal{F} := (U \mapsto \varphi(U)^{-1}(1))$. Show that \mathcal{F} is a \mathcal{G} -torsor and that isomorphic extensions give isomorphic torsors.

(5) Show that the map from $\operatorname{Ext}^1(\underline{\mathbb{Z}}, \mathcal{G})$ to the set of isomorphism classes of \mathcal{G} -torsors defined in (4) is a bijection.

In conclusion, we see that $H^1(X, \mathcal{G})$ can be identified with the set of isomorphism classes of \mathcal{G} -torsors. Since \mathcal{G} -torsors also make sense for sheaves of not necessarily Abelian groups, this gives a way of defining H^1 for non-Abelian sheaves.¹

¹However, in this case, H^1 will only be a pointed set, and not a group.