Dr. Gebhard Martin Dr. Yajnaseni Dutta Summer term 2023

Exercises, Algebraic Geometry II – Week 5

Exercise 21. Projection formula (4 points)

Let $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of ringed spaces, let \mathcal{F} be an \mathcal{O}_X -module, and let \mathcal{E} be a locally free \mathcal{O}_Y -module of finite rank. Show that, for all i, there exists an isomorphism

$$R^{i}f_{*}(\mathcal{F} \otimes_{\mathcal{O}_{X}} f^{*}\mathcal{E}) \cong R^{i}f_{*}(\mathcal{F}) \otimes_{\mathcal{O}_{Y}} \mathcal{E}.$$

Exercise 22. Coherence of Ext sheaves (4 points) Let X be a Noetherian scheme and $\mathcal{F}, \mathcal{G} \in Mod(X, \mathcal{O}_X)$.

(1) Assume \mathcal{F} is coherent and \mathcal{G} is quasi-coherent. Show that, for all Spec $A = U \subseteq X$ open affine and all $i \ge 0$, there is a natural isomorphism

$$\mathcal{E}xt^i_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})|_U \cong \operatorname{Ext}^i_A(\mathcal{F}(U),\mathcal{G}(U))^{\sim}.$$

Conclude that $\mathcal{E}xt^i_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$ is quasi-coherent.

(2) Assume additionally that \mathcal{G} is also coherent. Show that $\mathcal{E}xt^{i}_{\mathcal{O}_{Y}}(\mathcal{F},\mathcal{G})$ is coherent.

Exercise 23. Not enough projectives (4 points) Let k be an infinite field and let $X = \mathbb{P}^1_k$.

Show that, in each of the categories $Mod(X, \mathcal{O}_X)$, $QCoh(X, \mathcal{O}_X)$, and $Coh(X, \mathcal{O}_X)$, there exists no projective object \mathcal{P} with a surjection $\mathcal{P} \to \mathcal{O}_X$. In particular, \mathcal{O}_X is not projective. (Hint: Consider surjections of the form $\mathcal{O}_V \to k(x)$ and $\mathcal{L} \to \mathcal{L} \otimes k(x)$, where $x \in V \subseteq X$ is open and $\mathcal{L} \in Pic(X)$)

Exercise 24. Enough locally frees and homological dimension (4 points)

Let X be a Noetherian scheme such that $\operatorname{Coh}(X, \mathcal{O}_X)$ has enough locally frees, i.e., such that every coherent sheaf on X is a quotient of a locally free sheaf of finite rank. In this case, the homological dimension $\operatorname{hd}(\mathcal{F})$ of a coherent sheaf \mathcal{F} on X is the minimal length of a locally free resolution of \mathcal{F} .¹

- (1) Show that, for every $\mathcal{G} \in \operatorname{Mod}(X, \mathcal{O}_X)$, the functors $\mathcal{E}xt^i_{\mathcal{O}_X}(-, \mathcal{G})$ form a (contravariant) universal δ -functor from $\operatorname{Coh}(X, \mathcal{O}_X)$ to $\operatorname{Mod}(X, \mathcal{O}_X)$.
- (2) Show that $\operatorname{hd}(\mathcal{F}) \leq n$ if and only if $\mathcal{E}xt^{i}_{\mathcal{O}_{X}}(\mathcal{F},\mathcal{G}) = 0$ for all i > n and $\mathcal{G} \in \operatorname{Mod}(X,\mathcal{O}_{X})$.
- (3) Show that $\operatorname{hd}(\mathcal{F}) = \sup_{x \in X} \operatorname{pd}(\mathcal{F}_x)$, where $\operatorname{pd}(\mathcal{F}_x)$ is the projective dimension of \mathcal{F}_x , i.e., the minimal length of a projective resolution of the $\mathcal{O}_{X,x}$ -module \mathcal{F}_x .
- (4) Show that every projective scheme over a Noetherian ring has enough locally frees.

Due 12.05.2023, 2pm

¹Set $hd(\mathcal{F}) = \infty$ if there is no finite locally free resolution.

The next exercise is not necessary for the understanding of the lectures at this point.

Exercise 25. An application of Chow's lemma (+ 4 extra points) The goal of this exercise is to prove the following statement:

Let $X \to Y$ be a proper morphism of Noetherian schemes. Let $\mathcal{F} \in \operatorname{Coh}(X, \mathcal{O}_X)$. Then, $R^i f_* \mathcal{F} \in \operatorname{Coh}(Y, \mathcal{O}_Y).$

Prove this as follows:

- (1) Reduce to the case where Y = Spec A is affine. By Chow's lemma, there exists a projective A-scheme X' together with a morphism $g: X' \to X$ over Y such that there exists an open $U \subseteq X$ such that $g^{-1}(U) \to U$ is an isomorphism.
- (2) Use induction on dim(supp(\mathcal{F})) and the Grothendieck spectral sequence

$$E_2^{p,q} = H^p(X, R^q g_*(g^*\mathcal{F})) \Rightarrow H^{p+q}(X', g^*\mathcal{F})$$

to show that $H^n(X, g_*g^*\mathcal{F})$ is a finitely generated A-module for all n.

(3) Using the same type of induction, conclude that $H^n(X, \mathcal{F})$ is a finitely generated Amodule for all n. Conclude that $R^i f_* \mathcal{F} \in \operatorname{Coh}(Y, \mathcal{O}_Y)$.