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Exercises, Algebraic Geometry II — Week 8

Exercise 36. Flatness is an open property (+ 4 extra points)
Let f: X — Y be a morphism of finite type between Noetherian schemes. Show that the
locus

{reX| fisflatat 2} C X

is open (possibly empty).

Exercise 37. Codimension of the non-flat locus for finite morphisms (4 points)
Let f: X — Y be a finite surjective morphism between integral Noetherian schemes.

(1) Let V C Y be the set of points over which f is flat. Show that V is open.

(2) Assume that Y is regular in codimension 1. Show that codim(Y \ VY) > 2.
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) Show that (2) fails in general if ¥ is not assumed to be regular in codimension 1.

) Show that if f is not finite, then the maximal subset V' C Y over which f is flat is not
necessarily open.

Exercise 38. Flat limits (4 points)

Let A be a discrete valuation ring, let 0 € Spec A be the closed point, and let 5 € Spec A be
the generic point. Let X be a Noetherian scheme over Spec A and let Y C X, be a closed
subscheme.

(1) Show that the scheme-theoretic closure Y of Y in X (i.e. the smallest closed subscheme
of X containing Y') is flat over Spec A.

(2) Show that if Y’ C X is another closed subscheme which is flat over A and restricts to
Y over the generic point, then Y’ =Y. The special fiber (Y) is called the flat limit of
Y at 0.

(3) Let A = k[t]q), let X =A%, and Y = V(y,2) UV (z, z—t). Compute the flat limit of ¥’
at t = 0. Draw a picture!

Exercise 39. First order deformations (4 points)

Let Y C X be a closed subscheme of a scheme X of finite type over a field k. Let D = k[e]/(£?)
be the ring of dual numbers. A first order deformation of Y in X is a closed subscheme
Y’ C X Xgpeck Spec D which is flat over D and whose closed fiber is Y.

(1) Show that the set of first order deformations of Y in X is in bijection with H°(Y, Ny/x),
where Ny x = (Z/I%)" is the normal sheaf of Y in X, where 7 is the ideal of ¥ in X.

(2) Assume that Y is a geometrically integral smooth projective curve on a smooth surface
X over a perfect field k£ and that Ny/ x has negative degree on Y. Show that Y has no
non-trivial first order deformations in X (we say that Y is (infinitesimally) rigid in X).
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The next exercise is not necessary for the understanding of the lectures at this point.

Exercise 40. Some more deformation theory (4 4 extra points)

Let A be a finitely generated algebra over a field k. Choose an exact sequence
0—=1I—klxy,...,zp] > A—0,

consider the associated conormal sequence
I/ = Qe — Qe — 0,

and apply Hom4(—, A) to obtain

0 — Homa(Q4/x, A) = Homa (o, z)/k: A) — Homa(I/1?, A) — TY(A) — 0,
where T1(A) is defined via this sequence.

(1) Show that T'(A) is in bijection with the set of isomorphism classes of first order defor-
mations of A, i.e., flat D-algebras A together with an isomorphism A ®p k = A.

(2) Conclude that T'(A) is independent of the presentation of A as a quotient of a poly-
nomial ring.

(3) Conclude that if A is smooth over k, then A has no non-trivial first order deformations.
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Reflex test

Let X be a scheme. For which points € X is Spec(k(z)) — X a flat morphism?

Are there varieties that are neither projective nor quasi-projective nor affine?

Describe an example of a birational morphism f: X — Y whose image is neither open nor closed.
Write down an example of a field extension K; C Ko with K>/K; algebraic but Q, /x, # 0.

Let A be a k-algebra. Compare Qy[z, ... ,1/k With Qapz, . 2.1/4-

Consider morphisms of schemes f: X — Y and ¢g: Y — Z. Is the natural morphism f*Qy,z — Qx/y
always injective?

Let X be an irreducible scheme of finite type over a field k. Is X smooth over k if Qx/, is locally free?

8. Let X be an integral scheme of finite type over a field ¥ and x € X. Compare dimg(x) Qx(x)/x and
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Describe the modules Qk/ky Qk[z]/(z2)/k and Qk(z)/k

Find an example of a non-empty, integral, finite type k-scheme X for which there exists no non-empty
open subset U C X which is smooth over k.

Is there a natural map d: Ox — Qx/.7

Is a flat morphism always surjective? Can the image of a flat morphism be closed?
What is the canonical bundle wx,;, of X = P" x; P™7

Is there any relation between dim(X), rk(€2x/x), and trdeg(K (X)/k)?

What causes the problems when one wants to compare the Zariski tangent space T'x , and the fibre
QX/k ® k($)7

Give an example of a regular ring and of a non-regular ring. What is the easiest/standard example of
a regular non-smooth k-scheme? Can you think of one other example?

What is the Hilbert polynomial of a reduced k-scheme consisting of two points? Does the answer depend
on the field k£ or on the projective embedding?

Give examples of modules that are flat and of those that are not over the two ring k[z1, z2] and k[z]/x>.
Are the function fields of the Fermat curves Vi (arg + ¢+ :rg) C P? isomorphic for all d?
Can wx/,, be a trivial invertible sheaf without {2x/; being a trivial locally free sheaf?

Which of the following properties of a scheme over a field are preserved by passing to a field extension:
regular, integral, irreducible, reduced? What if the field has characteristic 07

Which of the following properties of a flat morphism f can you check by checking it on fibers over
closed points: proper, finite? Can you also do that without assuming that f is flat?

Is non-flatness always detected by a jump in fiber dimension?

Recall the two standard right exact sequences involving 25,4 and the corresponding sheaf versions.
How do you pass from the ideal sheaf of the diagonal A: X — X xy X to Qx,y?

Have you memorized the Euler sequence?

When is a scheme X flat over a field k7

Which of the following morphisms are flat? a) The blow-up of the origin in A%. b) A closed embedding.
¢) An open embedding. d) A finite morphism between smooth projective curves.

Explain why there are always maps Ext?(F,G) — H°(X, Ext?(F,G)) and HP(X,F) — H°(Y, RP f.F)
For what general conditions on X and F do we have H*(X, F) finite-dimensional vector space?
Let D be a hypersurface in P". What is H'(X \ D, Ox\p)?

Let X1, X2 C P} be projective varieties that are isomorphic as schemes. Do the Hilbert polynomials of
X1 and X2 agree?

State general conditions on X, F and i such that H* (X, F) = 0.
Under which assumptions on a scheme X over a field k& does Serre duality hold on X and in what sense?

Do you remember all right-derived functors that appeared in the lecture?



