Dr. Gebhard Martin Dr. Yajnaseni Dutta Summer term 2023

Exercises, Algebraic Geometry II – Week 9

Exercise 41. Smooth and non-smooth morphisms (4 points) Let k be a field. Consider the projection $\pi: \mathbb{A}_k^2 \to \mathbb{A}_k^1$, $x \mapsto x_1 + x_2$. Decide whether the restriction of π to $X \subseteq \mathbb{A}_k^2$ is flat or smooth, where X is:

- (1) $X = V(x_1^2 x_2^2);$
- (2) $X = V(x_1^2 + x_2^2 + 2x_1x_2 x_2 + x_1);$
- (3) $X = \mathbb{A}_k^2 \setminus V(x_1 x_2);$
- (4) $X = V((x_1 x_2)(x_1 1), (x_1 x_2)(x_1 + x_2)).$

Exercise 42. Étale covering of the node (4 points)

Let k be a field of characteristic different from 2. Consider the affine nodal cubic curve $C := V(x_2^2 - x_1^2(x_1 + 1)) \subseteq \mathbb{A}_k^2$. Construct a curve C' together with a finite étale morphism $f: C' \to C$ such that C' has two irreducible components and the restriction of f to each of them describes the normalization of C. Draw a picture!

(Hint: Use the map $\mathbb{A}^2_k \to \mathbb{A}^2_k$ given by $x_1 \mapsto y_2^2 - 1, x_2 \mapsto y_1 y_2$.)

Exercise 43. Infinitesimal lifting criteria (4 points)

A closed immersion of schemes $S_0 \hookrightarrow S$ with ideal sheaf \mathcal{I} is called *first order thickening* if $\mathcal{I}^2 = 0$. A morphism of schemes $f : X \to Y$ is called *formally smooth* (resp. *formally unramified*, resp. *formally étale*) if for all commutative diagrams of solid arrows

where $S_0 \to S$ is a first order thickening, some (resp. at most one, resp. a unique) dotted arrow making the diagram commute exists. Now, assume that X = Spec B, Y = Spec A, S =Spec C, and $S_0 = \text{Spec } C/I$ for some ideal I with $I^2 = 0$.

- (1) Let $\phi_1, \phi_2 : B \to C$ be two morphisms inducing a dotted arrow making the diagram commute. Show that the map $\phi_1 \phi_2$ induces an A-linear derivation $B \to I$.
- (2) Assume that $\phi: B \to C$ is a morphism inducing a dotted arrow making the diagram commute and $D: B \to I$ is an A-linear derivation. Show that $\phi + D: B \to C$ induces another dotted arrow making the diagram commute.
- (3) Show that f is formally unramified if and only if $\Omega_{B/A} = 0$. (Hint: For a *B*-module *M*, consider $B[M] = \{b + m \mid b \in B, m \in M\}$.)

Due 16.06.2023, 2pm

(4) (+2 extra points) Show that if f is formally smooth, then $\Omega_{B/A}$ is a projective B-module.

(One can show that a morphism of schemes is smooth/unramified/étale as defined in the lecture if and only if it is locally of finite presentation and formally smooth/unramified/étale. This goes under the name "infinitesimal lifting criterion". Compare the definition of formal smoothness with the definition of submersion in differential geometry.)

Exercise 44. *Étale morphisms* (4 points)

Decide which of the following morphisms is étale or at least unramified.

- (1) $\mathbb{A}^1_k \setminus \{0\} \to \mathbb{A}^1_k \setminus \{0\}, t \mapsto t^2.$
- (2) $\mathbb{P}^n_k \to \mathbb{P}^n_k, [x_0:\cdots:x_n] \mapsto [x_0^\ell:\cdots:x_n^\ell]$ where l > 1.
- (3) $\operatorname{Spec}(\mathbb{Q}(\sqrt{5})) \to \operatorname{Spec}(\mathbb{Q}).$
- (4) $\operatorname{Spec}(k[t]) \to \operatorname{Spec}(k[x, y]/(x^3 y^2))$ given by $x \mapsto t^2, y \mapsto t^3$.

The next exercise is not necessary for the understanding of the lectures at this point.

Exercise 45. A strange net of plane cubics (+ 4 extra points)

Let k be an algebraically closed field of characteristic 2. Let $S \subseteq \mathbb{P}^2_k$ be the subset of seven points with coordinates in \mathbb{F}_2 . Consider the linear system L of plane cubic curves that pass through the seven points of S.

- (1) Show that L determines a morphism $\mathbb{P}_k^2 \setminus S \to \mathbb{P}_k^2$ which is generically finite of degree 2 and such that the corresponding extension of function fields is purely inseparable.
- (2) Show that every curve C in L is singular. More precisely, show that C is either a union of lines or an irreducible cubic with a cusp (i.e. C is projectively equivalent to $V_+(y^2z+x^3)$).
- (3) Show that the singularities of the curves in L cover \mathbb{P}^2_k .