Exercises, Algebraic Geometry I – Week 2

Exercise 7. Sheafification (3 points)

Describe examples of presheaves (of abelian groups) \mathcal{F} for which the sheafification $\mathcal{F} \to \mathcal{F}^+$ is not injective resp. not surjective on some open set. Find an example with $\mathcal{F} \neq 0$ but $\mathcal{F}^+ = 0$.

Exercise 8. Subsheaf with support and left-exactness (6 points) Let \mathcal{F} be a sheaf on a topological space X and let $Z \subseteq X$ be a closed subset.

(i) For $U \subseteq X$ open and $s, t \in \mathcal{F}(U)$, show that the set of points $x \in U$ with $s_x = t_x$ in \mathcal{F}_x is open in U. In particular, if \mathcal{F} is a sheaf of abelian groups, then the support of s defined as

$$\operatorname{supp}(s) = \{ x \in U \mid s_x \neq 0 \}$$

is closed in U.

(*Warning:* Observe that in the situation of Exercise 9 for $f \in C^0(U)$ the zero locus does not necessarily coincide with $U \setminus \text{supp}(f)$.)

(ii) Show that the association

$$\mathcal{H}^0_Z(\mathcal{F}): U \mapsto \Gamma_{Z \cap U}(U, \mathcal{F}) \coloneqq \{ s \in \mathcal{F}(U) \mid \operatorname{supp}(s) \subseteq Z \cap U \}$$

defines a subsheaf of \mathcal{F} .

(A sheaf \mathcal{F} of abelian groups is said to be supported on Z if $\mathcal{H}^0_Z(\mathcal{F}) = \mathcal{F}$.)

(iii) Prove that $\Gamma_{Z \cap U}(U, : \operatorname{Sh}(X) \to (Ab)$ is a left exact functor, i.e. for any short exact sequence of sheaves

$$0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$$

the sequence

$$0 \to \Gamma_{Z \cap U}(U, \mathcal{F}_1) \to \Gamma_{Z \cap U}(U, \mathcal{F}_2) \to \Gamma_{Z \cap U}(U, \mathcal{F}_3)$$

is exact. Note the important special case Z = X, where $\Gamma_{Z \cap U}(U, -) = \Gamma(U, -)$.

(Warning: But usually $\Gamma_{Z \cap U}(\mathcal{F}_2) \to \Gamma_{Z \cap U}(\mathcal{F}_3)$ is not surjective, i.e. $\Gamma_{Z \cap U}$ is not exact.)

Exercise 9. Local rings of continuous functions (3 points)

Let X be a topological space and let C^0 be the sheaf of continuous functions on X. Consider for a point $x \in X$ the stalk C_x^0 . Show that the map $C_x^0 \to \mathbb{R}$, $f \mapsto f(x)$ is well defined and that C_x is a local ring with maximal ideal $\mathfrak{m}_x := \{f \in C_x^0 \mid f(x) = 0\}$. Describe similar situations involving differentiable or holomorphic functions.

Please turn over

Due this Friday 21.10.2022, 2pm

The last exercise is not necessary for the understanding of the lectures at this point.

Exercise 10. Functor of points and the Yoneda lemma (4 extra points) Let \mathcal{C} be a category with sets of morphisms between two objects X, Y denoted Mor(X, Y). Then every object X in \mathcal{C} induces a functor

$$h_X \colon \mathcal{C}^{\mathrm{op}} \to (Sets), \ Y \mapsto h_X(Y) \coloneqq \mathrm{Mor}(Y, X).$$

Observe that $h_X(X)$ contains a distinguished element.

- (i) Consider the three categories C := (Top) (of topological spaces); C := (Ab) (of abelian groups); C := (Rings) (of rings) and denote for each object X in C by |X| the underlying set (the set of points). Show that in all three cases there exists an object Z in C such that for all X the set of points |X| can be recovered as $|X| = h_X(Z)$.
- (ii) Consider the category $\mathcal{C} \coloneqq (Rings)^{\text{op}}$. Does there exist an object as in (i) in this case?
- (iii) For an arbitrary category \mathcal{C} , denote by Fun(\mathcal{C}^{op} , (*Sets*)) the category of functors $\mathcal{C}^{\text{op}} \to (Sets)$ and consider the functor

$$h: \quad \mathcal{C} \quad \to \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, (Sets))$$
$$X \quad \mapsto h_X.$$

The Yoneda lemma then asserts that h is a fully faithful embedding, in other words h defines an equivalence of categories between C and a full subcategory of Fun(C^{op} , (Sets)). Spell out what this means and try to prove it. Check Vakil's notes on the subject (or any other source). Objects in the image of h (or, more precisely, objects isomorphic to objects in the image) are called *representable functors*.