
Dr. Gebhard Martin Winter term 2022/23

Dr. Yajnaseni Dutta

Exercises, Algebraic Geometry I – Week 2

Exercise 7. Sheafification (3 points)
Describe examples of presheaves (of abelian groups) F for which the sheafification F → F+ is
not injective resp. not surjective on some open set. Find an example with F ̸= 0 but F+ = 0.

Exercise 8. Subsheaf with support and left-exactness (6 points)
Let F be a sheaf on a topological space X and let Z ⊆ X be a closed subset.

(i) For U ⊆ X open and s, t ∈ F(U), show that the set of points x ∈ U with sx = tx in
Fx is open in U . In particular, if F is a sheaf of abelian groups, then the support of s
defined as

supp(s) = {x ∈ U | sx ̸= 0}

is closed in U .

(Warning: Observe that in the situation of Exercise 9 for f ∈ C0(U) the zero locus does
not necessarily coincide with U \ supp(f).)

(ii) Show that the association

H0
Z(F) : U 7→ ΓZ∩U (U,F) := {s ∈ F(U) | supp(s) ⊆ Z ∩ U}

defines a subsheaf of F .

(A sheaf F of abelian groups is said to be supported on Z if H0
Z(F) = F .)

(iii) Prove that ΓZ∩U (U, ) : Sh(X) → (Ab) is a left exact functor, i.e. for any short exact
sequence of sheaves

0 → F1 → F2 → F3 → 0

the sequence
0 → ΓZ∩U (U,F1) → ΓZ∩U (U,F2) → ΓZ∩U (U,F3)

is exact. Note the important special case Z = X, where ΓZ∩U (U,−) = Γ(U,−).

(Warning: But usually ΓZ∩U (F2) → ΓZ∩U (F3) is not surjective, i.e. ΓZ∩U is not exact.)

Exercise 9. Local rings of continuous functions (3 points)
Let X be a topological space and let C0 be the sheaf of continuous functions on X. Consider
for a point x ∈ X the stalk C0

x. Show that the map C0
x → R, f 7→ f(x) is well defined and that

Cx is a local ring with maximal ideal mx := {f ∈ C0
x | f(x) = 0}. Describe similar situations

involving differentiable or holomorphic functions.
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The last exercise is not necessary for the understanding of the lectures at this point.

Exercise 10. Functor of points and the Yoneda lemma (4 extra points)
Let C be a category with sets of morphisms between two objects X,Y denoted Mor(X,Y ).
Then every object X in C induces a functor

hX : Cop → (Sets), Y 7→ hX(Y ) := Mor(Y,X).

Observe that hX(X) contains a distinguished element.

(i) Consider the three categories C := (Top) (of topological spaces); C := (Ab) (of abelian
groups); C := (Rings) (of rings) and denote for each object X in C by |X| the underlying
set (the set of points). Show that in all three cases there exists an object Z in C such
that for all X the set of points |X| can be recovered as |X| = hX(Z).

(ii) Consider the category C := (Rings)op. Does there exist an object as in (i) in this case?

(iii) For an arbitrary category C, denote by Fun(Cop, (Sets)) the category of functors Cop →
(Sets) and consider the functor

h : C → Fun(Cop, (Sets))

X 7→ hX .

The Yoneda lemma then asserts that h is a fully faithful embedding, in other words h
defines an equivalence of categories between C and a full subcategory of Fun(Cop, (Sets)).
Spell out what this means and try to prove it. Check Vakil’s notes on the subject (or
any other source). Objects in the image of h (or, more precisely, objects isomorphic to
objects in the image) are called representable functors.

2


