Exercises, Algebraic Geometry I – Week 4

Exercise 17. Zariski tangent space (4 points)

Let (X, \mathcal{O}_X) be an scheme. For a point $x \in X$ the quotient $\mathfrak{m}_x/\mathfrak{m}_x^2$ is considered as a vector space over the residue field $k(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x$. The Zariski tangent space T_x of X at $x \in X$ is defined as the dual of this vector space, i.e.

$$T_x \coloneqq (\mathfrak{m}_x/\mathfrak{m}_x^2)^* = \operatorname{Hom}_{k(x)}(\mathfrak{m}_x/\mathfrak{m}_x^2, k(x)).$$

Assume (X, \mathcal{O}_X) is a k-scheme, where k is a field, and denote the ring of dual numbers $k[t]/(t^2)$ by $k[\varepsilon]$.

- (i) Show that giving a morphism $(\operatorname{Spec}(k[\varepsilon]), \mathcal{O}_{\operatorname{Spec}(k[\varepsilon])}) \to (X, \mathcal{O}_X)$ that is compatible with the morphisms to $(\operatorname{Spec}(k), \mathcal{O}_{\operatorname{Spec}(k)})$ is equivalent to giving a rational point $x \in X$ and an element $v \in T_x$.
- (ii) Calculate T_0 for \mathbb{A}_k^n and for $\operatorname{Spec}(k[x,y]/(y^2+x^3)) \subseteq \mathbb{A}_k^2$.

Exercise 18. Noetherian topological spaces (4 points)

A topological space X is called *Noetherian* if it satisfies the descending chain condition for closed subsets, i.e., if for every chain of closed subsets $V_1 \supseteq \ldots \supseteq V_i \supseteq \ldots$, there exists an $r \ge 1$ such that $V_i = V_r$ for all $i \ge r$.

- (i) Show that X is Noetherian if and only if every open subset $U \subseteq X$ is quasi-compact. In particular, Noetherian spaces are quasi-compact and quasi-separated.
- (ii) Show that any subset (with the subspace topology) of a Noetherian space X is Noetherian.
- (iii) An *irreducible component* of a topological space X is an irreducible subset which is maximal with respect to inclusion of irreducible subsets. Show that, in general, irreducible components are closed. Show that a Noetherian space has finitely many irreducible components.
- (iv) Show that the underlying topological space of a Noetherian scheme (X, \mathcal{O}_X) is Noetherian. Give an example that shows that the converse is not true in general.

Exercise 19. A non-affine open subscheme of an affine scheme (3 points)

Let k be a field and consider the affine plane $\mathbb{A}_k^2 = \operatorname{Spec} k[x, y]$. Let $0 \in \mathbb{A}_k^2$ be the closed point corresponding to the maximal ideal (x, y) and let $U := \mathbb{A}_k^2 \setminus 0$.

(i) Show that restriction of sections induces an isomorphism $H^0(\mathbb{A}^2_k, \mathcal{O}_{\mathbb{A}^2_r}) \xrightarrow{\sim} H^0(U, \mathcal{O}_U)$.

(ii) Deduce that U is not an affine scheme.

Please turn over

Due 04.11.2022, 2pm

Exercise 20. Glueing schemes and morphisms. (5 points)

A glueing datum is a quadruple $(I, \{X_i\}_{i \in I}, \{U_{ij}\}_{i,j \in I}, \{\varphi_{ij}\}_{i,j \in I})$ where I is an index set, each X_i is a scheme, each $U_{ij} \subseteq X_i$ is an open subscheme, and each $\varphi_{ij} : U_{ij} \to U_{ji}$ is an isomorphism of schemes such that for all $i, j, k \in I$ the following three conditions hold:

(a) $U_{ii} = X_i$ and $\varphi_{ii} = \mathrm{id}_{X_i}$.

(b)
$$\varphi_{ij}^{-1}(U_{ji} \cap U_{jk}) = U_{ij} \cap U_{ik}.$$

(c)
$$\varphi_{ik}|_{U_{ij}\cap U_{ik}} = \varphi_{jk}|_{U_{ji}\cap U_{jk}} \circ \varphi_{ij}|_{U_{ij}\cap U_{ik}}$$

For $x \in X_i$ and $x' \in X_j$ we write $x \sim x'$ if and only if $x \in U_{ij}$, $x' \in U_{ji}$, and $\varphi_{ij}(x) = x'$.

- (i) Show that \sim is an equivalence relation. Define $X := (\coprod X_i) / \sim$ and let $\varphi_i : X_i \to X$ be the natural map.
- (ii) Define a subset $U \subseteq X$ to be open if and only if $\varphi_i^{-1}(U)$ is open for all *i*. Show that this defines a topology on X such that each φ_i is a homeomorphism onto its image. Define $U_i := \varphi_i(X_i)$.
- (iii) Define O_{Ui} := φ_{i,*}O_{Xi}. Use the φ_{ij} to glue the O_{Ui} to a sheaf of rings O_X on X such that (X, O_X) is a scheme.
 (Hint: Recall Exercise 3.)
- (iv) Show that the scheme X satisfies the following universal property: For every scheme Y and every collection of morphisms of schemes $f_i : X_i \to Y$ such that $f_j|_{U_{ji}} \circ \varphi_{ij} = f_i|_{U_{ij}}$ for all $i, j \in I$, there exists a unique morphism of schemes $f : X \to Y$ such that $f_i = f \circ \varphi_i$ for all $i \in I$.

(Remark: As a special case, note that if X' is a scheme, $X' = \bigcup_{i \in I} X_i$ is an open cover with $U_{ij} := X_i \cap X_j$ and $\varphi_{ij} := \operatorname{id}_{U_{ij}}$, then the inclusions $X_i \to X'$ define an isomorphism $f: X \to X'$ by Exercise 14.)

Exercise 21. Reduced schemes and reduction of schemes (4 points)

Let X be a scheme. The *reduction* of X is a reduced scheme X_{red} together with a morphism $\iota : X_{\text{red}} \to X$ such that every morphism $Z \to X$ from a reduced scheme Z factors uniquely through ι .

- (i) Show that if X = Spec(A) is affine, then $\text{Spec}(A/\mathfrak{N}(A))$, where $\mathfrak{N}(A)$ is the nilradical of A, together with the morphism ι induced by the quotient map $A \to A/\mathfrak{N}(A)$ is the reduction of X.
- (ii) Show that every scheme admits a (necessarily unique) reduction. Show that ι is a homeomorphism of topological spaces.

The last exercise is not necessary for the understanding of the lectures at this point.

Exercise 22. Right-adjoint to global sections (3 extra points)

In the lecture, we have seen that Spec(-) is right-adjoint to the functor that maps a locally ringed space to its ring of global sections. Can you find the right-adjoint to the functor that maps a ringed space to its ring of global sections?