Dr. Gebhard Martin Dr. Yajnaseni Dutta

Exercises, Algebraic Geometry I – Week 7

Exercise 35. Valuation rings (5 points)

In this exercise, we want to understand why valuation rings are called "valuation" rings and why discrete valuation rings (DVRs) are indeed "discrete".

- (i) Let A be a subring of a field K. Assume that for every $x \in K^{\times}$, either $x \in A$ or $x^{-1} \in A$. Show that A is a valuation ring with field of fractions K. [Bonus Exercise (+2 extra points): Show that the converse is true as well, i.e., if A is a valuation ring with field of fractions K, then for every $x \in K^{\times}$ either $x \in A$ or $x^{-1} \in A$.]
- (ii) Let A be a valuation ring in a field K. Let $\Gamma = K^{\times}/A^{\times}$ be the group (called the *value group*) formed by quotienting the multiplicative group K^{\times} by the group A^{\times} of invertible elements of A. Let $v: K^{\times} \to \Gamma$ be the quotient map.

Recall that a totally ordered abelian group is an abelian group G with a total order \leq such that $a \leq b$ implies $a + c \leq b + c$ for any $a, b, c \in G$. Now for $\gamma, \gamma' \in \Gamma$, represented by $x, x' \in K^{\times}$, define $\gamma \leq \gamma'$ if $\frac{x'}{x} \in A$. Show that \leq is well-defined and turns Γ into a totally ordered abelian group. Show that v is a valuation (i.e. a group homomorphism satisfying $v(a + b) \geq \min\{v(a), v(b)\}$)

Show that \leq is a well-defined total order on Γ . Show that v is a valuation (i.e. a group homomorphism satisfying $v(a + b) \geq \min\{v(a), v(b)\}$).

[Hint: Use the new definition of valuation ring as in (i).]

- (iii) Conversely, let Γ be a totally ordered abelian group and let $v : K^{\times} \to \Gamma$ be a valuation. Show that $A = \{a \in K^{\times} \mid v(a) \ge 0\} \cup \{0\}$ is a valuation ring in K with maximal ideal $\mathfrak{m}_A \coloneqq \{a \in K^{\times} \mid v(a) > 0\} \cup \{0\}.$
- (iv) Show that in a valuation ring every finitely generated ideal is principal. Thus a Noetherian valuation ring is a local principal ideal domain.
- (v) Show that a valuation ring A is Noetherian if and only if the associated valuation factors through a cyclic subgroup.

[Hint: Krull's Intersection Theorem]

(Note: In particular, either v(a) = 0 for all $a \in A$ and then A = K, or v(a) > 0 for some $a \in A$ and then v factors through a group isomorphic to \mathbb{Z} , hence the name "discrete" valuation ring.)

Exercise 36. Morphisms from regular curves to proper schemes (4 points)

The goal of this exercise is to get a taste of how the valuative criterion for properness is used in practice.

(i) Let S be a locally Noetherian scheme, let X and Y be schemes over S, assume Y is locally of finite type over S, and let $x \in X$ be a point. Show that every morphism of schemes Spec $\mathcal{O}_{X,x} \to Y$ over S is induced by a morphism of schemes $U \to Y$ over S, where $U \subseteq X$ is an open affine neighbourhood of x in X.

Due 25.11.2022, 2pm

(ii) In addition to the assumptions in (i), assume that $\mathcal{O}_{X,x}$ is a valuation ring, X is integral and Y is proper over S. Show that for every open subscheme $U \subseteq X$ such that x is contained in the closure of U, any morphism of S-schemes $U \to Y$ extends uniquely to a morphism $f': U' \to Y$ over S where $U \subset U' \subseteq X$ is a bigger open set containing x.

Exercise 37. Adjoint functors $f^* \dashv f_*$ (4 points)

Consider a morphism of ringed spaces $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$. Show that f^* is left adjoint to f_* , i.e. for all $\mathcal{F} \in Mod(X, \mathcal{O}_X)$ and $\mathcal{G} \in Mod(Y, \mathcal{O}_Y)$ there exists an isomorphism (functorial in \mathcal{F} and \mathcal{G}):

 $\operatorname{Hom}_{\mathcal{O}_X}(f^*\mathcal{G},\mathcal{F})\cong \operatorname{Hom}_{\mathcal{O}_Y}(\mathcal{G},f_*\mathcal{F}).$

Exercise 38. $M \mapsto M$ and adjunction (4 points)

Let X be the affine scheme $\operatorname{Spec}(A)$ and consider an A-module M and a sheaf \mathcal{F} of \mathcal{O}_X modules. Show that $(A\operatorname{-mod}) \to \operatorname{Mod}(X, \mathcal{O}_X), M \mapsto \tilde{M}$ is left adjoint to $\operatorname{Mod}(X, \mathcal{O}_X) \to (A\operatorname{-mod}), \mathcal{F} \mapsto \Gamma(X, \mathcal{F})$, i.e. that there exists a functorial (in M and \mathcal{F}) isomorphism

 $\operatorname{Hom}_A(M, \Gamma(X, \mathcal{F})) \cong \operatorname{Hom}_{\mathcal{O}_X}(\tilde{M}, \mathcal{F}).$

Exercise 39. Projection formula (3 points)

Consider a morphism of ringed spaces $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ and $\mathcal{F} \in \operatorname{Mod}(X, \mathcal{O}_X)$ and $\mathcal{G} \in \operatorname{Mod}(Y, \mathcal{O}_Y)$. Suppose \mathcal{G} is locally free of finite rank. Show that there exists a natural isomorphism

$$f_*(\mathcal{F} \otimes_{\mathcal{O}_X} f^*\mathcal{G}) \cong f_*\mathcal{F} \otimes_{\mathcal{O}_Y} \mathcal{G}.$$

The last exercise is not necessary for the understanding of the lectures at this point.

Exercise 40. Valuative criteria with DVRs (+ 6 extra points)

The goal of this exercise is to prove a valuative criterion for morphisms of finite type between locally Noetherian schemes.

- (i) Let A be a Noetherian local integral domain with field of fractions K. Let L be a finitely generated field extension of K. Show that there exists a discrete valuation ring B with field of fractions L that dominates A. You can follow the following steps:
 - (a) If L is not finite over K, let x_1, \ldots, x_n be a transcendence basis of L over K and replace A by a suitable localization of $A[x_1, \ldots, x_n]$ to reduce to the case where L is finite over K.
 - (b) Take any valuation ring dominating A in K and let v be the corresponding valuation. Let x_1, \ldots, x_n be a minimal set of generators of the maximal ideal \mathfrak{m} of A and order the x_i such that $v(x_n) = \min\{v(x_1), \ldots, v(x_n)\}$. Set $A' = A[\frac{x_1}{x_n}, \ldots, \frac{x_{n-1}}{x_n}] \subseteq K$. Show that $\mathfrak{m}A' \neq A'$. Show that the localization of A' at a minimal prime over $\mathfrak{m}A'$ has dimension 1 and dominates A.
 - (c) Finish the proof by applying the Krull–Akizuki theorem. (see for example TAG 00PG on the Stacks project)
- (ii) Let $f: X \to Y$ be a morphism of finite type and assume that Y is locally Noetherian.
 - (a) Show that f is universally closed if and only if f satisfies the existence part of the valuative criterion for DVRs.
 - (b) Show that f is separated if and only if f satisfies the uniqueness part of the valuative criterion for DVRs.
 - (c) Show that f is proper if and only if f satisfies existence and uniqueness of the valuative criterion for DVRs.