Exercises, Algebraic Geometry I – Week 9

Exercise 47. Qcqs lemma (4 points)

Let X be a scheme, let \mathcal{L} be an invertible \mathcal{O}_X -module and \mathcal{F} a quasi-coherent \mathcal{O}_X -module. For $s \in \Gamma(X, \mathcal{L})$, define $X_s := \{x \in X \mid s_x \notin \mathfrak{m}_x \mathcal{L}_x\}$, where \mathfrak{m}_x is the maximal ideal of $\mathcal{O}_{X,x}$.

- (i) Show that $X_s \subseteq X$ is open.
- (ii) Assume that X is quasi-compact and let $t \in \Gamma(X, \mathcal{F})$ such that $t|_{X_s} = 0$. Show that there exists an integer n > 0 such that $t \otimes s^{\otimes n} = 0 \in \Gamma(X, \mathcal{F} \otimes \mathcal{L}^{\otimes n})$.
- (iii) Assume that X is quasi-compact and quasi-separated. Show that for every section $t' \in \Gamma(X_s, \mathcal{F})$, there exists n > 0 and a section $t \in \Gamma(X, \mathcal{F} \otimes \mathcal{L}^{\otimes n})$ such that $t|_{X_s} = t' \otimes s|_{X_s}^{\otimes n}$

(Hint: Reduce to the case where X is an affine scheme and \mathcal{L} is the structure sheaf.)

Exercise 48. Veronese embedding (4 points)

Let $A = \bigoplus_{d \ge 0} A_d$ be a graded ring and n > 0. Let $A^{(n)}$ denote the graded ring defined by $A^{(n)} := \bigoplus_{d \ge 0} A_d^{(n)}$ with $A_d^{(n)} := A_{dn}$.

- (i) Show that there exists an isomorphism $\varphi \colon \operatorname{Proj}(A) \xrightarrow{\sim} \operatorname{Proj}(A^{(n)})$ with $\varphi^* \mathcal{O}(1) \cong \mathcal{O}(n)$.
- (ii) Consider the case $A = A_0[x_0, \ldots, x_r]$. Show that the surjection $A_0[y_0, \ldots, y_N] \twoheadrightarrow A^{(n)}$ mapping y_i to the *i*-th monomial of degree *n* in the variables x_i defines a closed embedding

$$v_n: \mathbb{P}^r_{A_0} \cong \operatorname{Proj}(A) \cong \operatorname{Proj}(A^{(n)}) \hookrightarrow \mathbb{P}^N_{A_0}$$

Find N. Show that for k a field, on k-rational points the morphism v_n is given by $[\lambda_0 : \cdots : \lambda_r] \mapsto [\lambda_0^n : \cdots : \lambda^I : \cdots : \lambda_r^n]$ with λ^I running through all monomials of degree n.

Exercise 49. Weighted projective space (4 points)

Let $n, a_0, \ldots, a_n \ge 1$ be integers and A_0 a ring. Let $A = A_0[x_0, \ldots, x_n]$. Equip A with the grading such that x_i is homogeneous of degree a_i . We define $\mathbb{P}_{A_0}(a_0, \ldots, a_n) := \operatorname{Proj} A_0[x_0, \ldots, x_n]$ and call it weighted projective space with weights (a_0, \ldots, a_n) over A_0 .

(i) Let $A_0[y_0, \ldots, y_n]$ be the polynomial ring with the standard grading. Show that the graded A_0 -algebra morphism

 $A_0[x_0,\ldots,x_n] \to A_0[y_0,\ldots,y_n]; \qquad x_i \mapsto y_i^{a_i}$

induces a finite surjective morphism $\pi : \mathbb{P}^n_{A_0} \to \mathbb{P}^n(a_0, \ldots, a_n).$

(ii) Show that $\mathbb{P}_{A_0}(a_0, a_1) \cong \mathbb{P}^1_{A_0}$ for all $a_0, a_1 \ge 1$ (not necessarily via π).

Due 09.12.2022, 2pm

(iii) Show that $\mathbb{P}_{A_0}(1,1,2) \cong V_+(y_1^2-y_0y_2) \subseteq \mathbb{P}^3_{A_0}$. Deduce that $\mathbb{P}_{A_0}(1,1,2)$ is not isomorphic to $\mathbb{P}^2_{A_0}$ over Spec A_0 .

(Hint: Reduce to the case where A_0 is a field k and calculate the Zariski tangent space of $V_+(y_1^2 - y_0y_2)$ at the k-rational point [0:0:0:1])

Exercise 50. Projection from a point (4 points)

- (i) Let k be a field. Show that the (graded) inclusion $k[x_0, \ldots, x_{n-1}] \hookrightarrow k[x_0, \ldots, x_n]$ defines a morphism $\pi : \mathbb{P}_k^n \setminus \{[0:\ldots:0:1]\} \to \operatorname{Proj} k[x_0, \ldots, x_{n-1}] = \mathbb{P}_k^{n-1}$. This is called the projection from the point $[0:\ldots:0:1]$ (to the hyperplane $V_+(x_n)$).
- (ii) Describe the k-rational points of the fibers of π over k-rational points of \mathbb{P}_k^{n-1} .
- (iii) Show that for any homogeneous polynomial $f \in k[x_0, \ldots, x_n]$ of degree 1 and a point $P \in D_+(f)$, there exists an automorphism $\sigma : \mathbb{P}^n_k \to \mathbb{P}^n_k$ such that $\sigma(V_+(f)) = V_+(x_n)$ and $\sigma(P) = [0 : \ldots : 0 : 1]$. (Hint: first try an explicit point P and a hyperplane $V_+(f)$ of your choice.)
- (iv) Let $\mathbb{P}^1_k = \operatorname{Proj} k[x_0, x_1]$, $\mathbb{P}^3_k = \operatorname{Proj} k[y_0, y_1, y_2, y_3]$, and $\mathbb{P}^2_k = \operatorname{Proj} k[z_0, z_1, z_2]$. Find a homogeneous ideal $I \subseteq k[z_0, z_1, z_2]$ such that $V_+(I)$ is the image of $\pi \circ v_3$, where $v_3 \colon \mathbb{P}^1 \to \mathbb{P}^3$ is the Veronese map of Exercise 48 and π is the projection from [0:0:1:0].

Exercise 51. Closed subschemes of products of projective spaces (4 points) Let A_0 be a ring, let $n_1, n_2 \ge 1$ be integers and consider

$$X = \mathbb{P}_{A_0}^{n_1} \times_{\text{Spec } A_0} \mathbb{P}_{A_0}^{n_2} = \text{Proj} (A_0[x_0, \dots, x_{n_1}] \times_{A_0} A_0[y, \dots, y_{n_2}])$$

Let f_1, \ldots, f_m be a set of bihomogeneous polynomials, that is, polynomials that are simultaneously homogeneous in the x_i and the y_i . The closed subscheme Z of X determined by the f_i is defined as follows: Choose integers m_{xij} and m_{yij} such that all the $x_i^{m_{xij}} f_j$ and $y_i^{m_{yij}} f_j$ have the same (standard) degree, let $I \subseteq A_0[x_0, \ldots, x_{n_1}] \times_{A_0} A_0[y, \ldots, y_{n_2}]$ be the ideal generated by these new polynomials, and let $Z = V_+(I) \subseteq X$.

- (i) Show that the closed subscheme Z does not depend on the chosen m_{xij} and m_{yij} .
- (ii) Let $A_0 = k$ be a field and $Z \subseteq \mathbb{P}^1_k \times_{\text{Spec } k} \mathbb{P}^1_k$ a closed subscheme given by the bihomogenous polynomial $x_0 y_1^2 - x_1 y_0^2$. Determine an ideal of image of Z under the Segre embedding $\mathbb{P}^1_k \times_{\text{Spec } k} \mathbb{P}^1_k \to \mathbb{P}^3_k$ of Exercise 45.

The last exercise is not necessary for the understanding of the lectures at this point.

Exercise 52. Grothendieck's classification of Locally free sheaves on \mathbb{P}^1 (+ 5 extra points) Let k be a field. Let \mathcal{F} be a locally free sheaf of rank r on \mathbb{P}^1_k .

- (i) Show that $\mathcal{F}|_{D_+(x_i)} \cong \mathcal{O}_{\mathbb{A}^1}^{\oplus r}$.
- (ii) Prove the following normal form for matrices over $k[t, t^{-1}]$: Let M be an $r \times r$ matrix over $k[t, t^{-1}]$ with determinant t^n for some $n \in \mathbb{Z}$. Then, there exist matrices $A \in \operatorname{GL}_r(k[t^{-1}])$ and $B \in \operatorname{GL}_r(k[t])$ such that

 $A \cdot M \cdot B = \text{diag}(t^{a_1}, \cdots, t^{a_r});$ the diagonal matrix

with $a_1 \ge a_2 \ge \ldots \ge a_r$, $a_i \in \mathbb{Z}$, and the a_i are uniquely determined by M.

(Hint: Assume that M has polynomial entries and argue by induction on r.)

(iii) Conclude that $\mathcal{F} \cong \mathcal{O}_{\mathbb{P}^1_k}(a_1) \oplus \ldots \oplus \mathcal{O}_{\mathbb{P}^1_k}(a_r)$, where the a_i are integers which are uniquely determined by \mathcal{F} up to reordering.