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1. Motivation

This course serves as an introduction to moduli of sheaves on smooth projective varieties over
an algebraically closed field k. Sheaves on varieties keep track of various algebraic and topological
data about the variety and moduli problems are the formal machinery to consider certain classes
of objects (sheaves for instance) together. Another advantage of studying these moduli problems is
that these give rise to interesting geometric objects of independent interests. For instance, moduli of
sheaves of K3 surfaces are symplectic. When smooth or are smoothable via a resolution preserving
the symplectic form, these moduli spaces serve as key examples of the so called hyperkaehler
manifolds. Moduli of vector bundles on curves have been used in re-construction problems. For
instance K3 surfaces which admit a smooth curve C of genus 11 can be reconstructed from certain
locus in the moduli space MC(2, 7) of rank 2 and degree 7 vector bundles on C. These are quite
powerful techniques and has shaped much of modern geometry.

Take for example the variety given by X = Spec k for some field k. Vector bundles on it are all
trivial. If we fix the rank of the vector bundle to be ` there is only isomorphism class of vector
bundle on k, namely k⊕`. Thus the moduli in this case is a point. The same is true for the affine
complex space since their geometry is very similar to that of a point.

If we upgrade to dimension 1, the picture is already quite interesting. For X = P1 we know line
bundles can be classified by its degree. Thus if we fix rank to be 1 and degree to be d, there is only
one vector bundle O(d) on P1. For higher rank we have Grothendieck’s theorem.

Theorem 1.1. A vector bundle of rank r over P1 can be written as a direct sum of line bundles
unique up to isomorphism.

Exercise 1. Let ` ' P1 ⊂ Pn be a line in the projective n-space. Find the decomposition of the
restriction of the cotangent bundle of Pn to this line, i.e. write ΩPn

∣∣
`

as direct sum of line bundles
on `.

Proof. Lets quickly recall the definition of complex vector bundles.

Definition 1.2. A vector bundle E on X is a scheme E , together with a morphism π : E → X such
that π is locally trivial in the Zariski topology, i.e. there exists a Zariski open covering {Ui}i∈I of
X and isomorphisms

ψi : π
−1(Ui)→ U × Ar

such that for any open affine V = SpecA ⊆ Ui ∩ Uj , there is a morphism

ψij := ψi ◦ ψ−1
j ∈ GL(r,A)

called the transition function. Furthermore ψij is linear in the sense that we obtain a morphism1

ψij := ψi ◦ ψ−1
j : V → GLr(C)

The tuples (Ui, ψi, ψij)i∈I) is the trivialization data and the integer r is the rank of the vector
bundle E . We call vector bundles of rank 1, line bundles. In what follows we will identify vector
bundles and locally free sheaves, i.e. the sheaf of continuous sections of the vector bundle (see
[Har77, Ex. II.5.18]).

On P1 let U0 = Spec k[s] and U1 = Spec k[t], U0,1 = Spec k[s, s−1] = U0 \ {0} and U1,0 =
Spec k[t, t−1] = U1 \ {0}. Note that both U0 and U1 are P1 with two points taken out. P1 can

be reconstructed by gluing together U0 and U1 along the isomorphism U1,0
∼−→ U0,1 induced by

k[s, s−1]→ k[t, t−1] sending s 7→ t−1.
Now a vector bundle π : E → P1 of rank r is equivalent to the trivialisation data

(U0, ψ0 : E|U0

∼−→ U0 × Ar, ψ0,1) and (U1, ψ1, ψ1,0)

1assume X is defined over C.
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Here ψ0,1 ∈ GL(r, k[s, s−1]), i.e. a matrix with coefficients in the polynomial ring k[s, s−1] with
nowhere zero determinant. Hence detψ0,1 = csm for some integer m and c ∈ C× since otherwise
it is a polynomial that admit zeros apart from the points [0 : 1] and [1 : 0] 2. We may and do
take c = 1 since any other choice of c would produce a vector bundle isomorphic to E. Now the
result follows from the claim that any matrix A(s, s−1) with determinant sm can be diagonalised
as follows: there exist M0(s) ∈ GL(r, k[s]) and M1(s−1) ∈ GL(r, k[s−1]) such that

M1(s−1)A(s, s−1)M0(s) =


sm1

sm2 0
·
·

0 ·
smr


with m1 ≥ m2 ≥ · · · ≥ mr, mi ∈ Z>0 and the mi’s are uniquely determined by the matrix A(s, s−1).
Indeed the vector bundle with ψi(s) replaced by Mi(s) ◦ ψi(s) for i = 0, 1 is isomorphic to E since
vector bundles on A1, the affine complex line are trivial.

To see the claim we follow [HM82] and proceed by induction. For r = 1 there is nothing to prove.
For r > 0, multiply A(s, s−1) by suitable power sN to get rid of the denominators, i.e. turn it into
a polynomial matrix A′(s). By elementary column operations, i.e. by multiplying by an elementary
matrix with coefficients in k[s] on the right, we may assume that A′(s) is lower triangular3. By
induction we can find M ′0(s) and M ′1(s−1) such that

(
1 0
0 M ′1(s−1)

)
A′(s)

(
1 0
0 M ′0(s)

)
=


sm
′
1

a2 sm
′
2 0

a3 sm
′
3

· ·
· 0 ·
ar sm

′
r

 (1)

with ai assumed to be polynomials in k[s] after clearing denominators once again. Lets assume
for a moment that m′1 ≥ m′i. Then by elementary column operation we may assume that deg ci <
m′i ≤ m′1 for all i. We now do row operation, i.e. multiplication on the left by elementary matrices
with coefficients in k[s−1]. We do this by multiplying the first row with suitable power of s−1 and
subtract from from the i-th row in order to get rid of the ai’s. Putting all the steps together we got

M1(s−1)sN
′
A(s, s−1)M0(s) =



s
m′1
1

a2 sm
′
2 0

a3 sm
′
3

· ·
· 0 ·
ar sm

′
r


where N ′ came from clearing denominators several times in the process. Let mi = m′i −N and we
are done.

To see why m′1 can be chosen to be maximal among m′i’s we argue as follows: Let the right hand
side (call it B(s)) of (1) to have the largest m′1 among all possible m′1’s which occur on such a
matrix B(s) equivalent to A′(s). This exists since det(A′(s)) is fixed and m′1 must be smaller that
the degree of the determinant polynomial. If there exists m′i > m′1, we replace the i-th row of B(s)

2here we use algebraically closed condition.
3triangularization over PID k[s]
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by suitable multiple of the first row repeatedly so that all terms of degree smaller that m′1 gets
killed in ai. So the i-th row of B(s) now looks like

(sm
′
1+1ãi(s), 0, · · · , 0, sm

′
1+1s(m′i−m′1), 0, · · · 0).

Now the idea is to switch the first column and the i-th column and do the same operation on B(s)
so that we obtain M ′′0 (s) and M ′′1 (s−1) satisfying

M ′′1 (s−1)B(s)M ′′0 (s) = B′(s)

and B′(s) is the form of the right hand side of (1). The new matrix is still equivalent to A′(s) but
its first element in the first row has degree at least m′1 + 1. This contradicts the fact that we chose
the first element of B(s) maximal possible amongst all equivalent matrices of A′(s).

The uniqueness is rather complicated; we will not get into it. For the details consult [HM82]
which we have followed closely. �

Remark 1.3 (A remark about the definition of vector bundles). It should be noted that on a complex
manifold we can define C∞ (resp. holomorphic) vector bundle by demanding that the transition
functions ψij ’s take values in the sheaf C∞X (resp. holomorphic) and Ui’s are analytic open covers.
When X is additionally projective analytic space (or, equivalently a projective variety), the category
of algebraic vector bundles we defined in the proof above coincides with the category of holomorphic
vector bundles on X. If we take ψij to be locally constant functions, i.e. on V ⊂ Ui ∩ Uj small
enough ψij : V → GLr(C) then we obtain the so-called locally constant sheaf.

1.1. Classification of vector bundles on P1. With Grothendieck’s result at our disposal, the
classification problem or the moduli problem for vector bundles on P1 somewhat simplifies. In other
words, if we fix rank r and degree d, we know any vector bundle E on P1 can be written as

E ' O(m1)⊕ · · · ⊕ O(mr)

with m1 ≥ · · · ≥ mr and
∑

imi = d. However this moduli problem is in a way “infinite”. Take for
example the following k ∈ N indexed set of non-isomorphic vector bundles of rank r and degree d.

Ek := O(−k)⊕O⊕r−2 ⊕O(k + d). (2)

I will convince you that there is no scheme S of finite type and a vector bundle E on X × S such
that we can find a sequence of points sk satisfying E |Xsk ' Ek. The reason is that if it did, the

dimension of the vector space H0(X,E |Xs) would be a upper semi-continuous function of s [Har77,
Theorem III.12.8], i.e. only finitely many jumps in the dimension is allowed. Lets now calculate
H0(P1,O(−k)⊕O⊕r−2 ⊕O(k + d)) = k + d+ r − 1 which grows as k →∞.

How do we tackle this unbounded moduli problem? There are two major discourses in the
literature. We will focus on one of them which is to restrict the class of vector bundle by imposing
the so-called (Gieseker)-stability criterion. This gives rise to a fairly well-behaved moduli space.

It turns out that in order to obtain a complete moduli space one needs to allow the so called
semi-stable sheaves as well. This is because stable bundles often in the limit splits of into the direct
sum of sub-bundles. This prompts another serious issue.

Example 1.4. On a smooth projective curve of genus g ≥ 1, the non-trivial extension E of a line
bundle L of degree d by itself gives rise to a simple (i.e. non-splittable) semi-stable vector bundle of
rank 2 and degree 2d 4. These extensions are parametrised by Ext1(L,L) ' H1(C,OC) and hence
the line A1 induces a vector bundle G on C ×A1 with Gs ' E for s ∈ A1 \ {0} and G0 ' L1 ⊕L2.
Take another family of semi-stable bundles given by F := p∗1E on C × A1 so that Fs ' E for all
s ∈ A1. The moduli map (appropriately defined) will send both families to the point corresponding
to [E]. But over 0, these two families disagree and thus should somehow be sent to different points.
In other words the images of these two families under the moduli map cannot be separated in the

4find the definition of semi-stable bundle and check this!
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moduli space. In order for a separated moduli space to exist we need to disallow certain sheaves.
This is taken care of by the so called S-equivalence (See ??). In this case the the two rank 2 bundles
are indeed S-equivalent. We will modify the moduli problem so that we identify all such extensions
to the S-equivalent class L ⊕ L.

Over P1 this makes the moduli problem somewhat boring, since any semi-stable rank r degree
dr S-equivalent class of vector bundles on P1 is given by just one vector bundle namely ⊕ri=1O(d).
However for higher genus curve we obtain an irreducible projective variety as a coarse moduli space.
It has dimension r2(g − 1) + 1 and when r and d are co-prime, i.e. (r, d) = 1 this moduli space is
smooth and fine.

But before we come to these concepts it would be both interesting and convenient for later use
to understand Grothendieck’s Quot scheme construction. These are somewhat indispensable in the
study of moduli problems in general. We will follow [HL10] closely for the most part of the course.

2. Coherent sheaves and their family

Let me start with two important exercises:

Exercise 2. Given a coherent sheaf F on a smooth projective scheme X, show that for m � 0,
H i(X,F ⊗OX(m)) = for i > 0 and the global sections of F ⊗OX(m) generates the sheaf.

Exercise 3. Given a globally generated vector bundle E on a smooth projective scheme X of rank
at least dimX + 1, show that there exists a short exact sequence of vector bundles

0→ OX → E → Q→ 0

where Q is the quotient bundle.

In the last section, we dismissed the possibility of finding a finite moduli for vector bundles
of rank r and degree d on P1 by showing that there are no scheme S of finite type that would
parametrise all such vector bundle. Parametrising in its finest form may be interpreted as the
existence of a S-flat coherent sheaf F on X × S such that any object from the class of sheaves we
are trying to parametrise is isomorphic to F|Xs for some s ∈ S. In this direction we will see that
for any projective morphism of Noetherian schemes X → S and a coherent sheaf F on X, S admits
a cover by disjoint locally closed subschemes Si such that F|X×SSi is flat over Si. This is called a
flattening stratification. Our next goal is to establish this phenomenon. Lets start by recalling an
indispensible fairly good indicator of flatness, the Hilbert polynomial.

2.1. Hilbert Polynomial. Recall that for a vector bundle E on a smooth projective curve C
of genus g with fixed polarisation OC(1), the only important numbers associated are the rank r
and degree d of its determinant bundle

∧r E . By this I mean that the Euler characteristic of any
twist E ⊗ OC(m), m ∈ Z>0 or the alternate sum of the dimension of the cohomologies of E(m) is
completely determined in terms of r, d and g. Recall that

χ(E ⊗OC(m)) = dimH0(C, E ⊗OC(m))− dimH1(C, E ⊗OC(m)) = r(1− g+ deg(C)m) + d. (3)

So the Hilbert polynomial is given by P (E , t) = tr deg(C)+r(1−g)+d. This is a linear polynomial
and P (E ,m) = χ(E(m)) for all m.

In higher dimensions, finding a suitable invariant is not so easy, in the sense that there may
be many options. From the point of view of Gieseker stability the most important is the Hilbert
polynomial P (E , t). For m large enough χ(E(m)) 5 is still a polynomial in m in higher dimension.
This is called the Hilbert polynomial, P (E , t) in variable t. In particular, P (E ,m) = χ(E(m)) for
m large enough. More generally we will allow coherent sheaves F in place of E . The polynomial
P (F, t) is of degree the same as dim Supp(F ).

5We use the notation E(m) for E ⊗ OX(m).
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The greatest advantage of the Hilbert polynomial is that if we let the coherent sheaf vary in flat
family (the notion of which will be discussed in a moment) the Hilbert polynomial does not change.
This is a big advantage since it let us control them simultaneously.

2.2. Flat family. Let (X,O(1)) be a smooth projective variety with a fixed polarisation O(1). To
solve the “moduli” problem, we would like to find a sheaf F on X×M such that for every m ∈M ,
Xm ' X is the fibre over m and Fm := F|Xm is a coherent sheaf on X. Furthermore we would like
that for m 6= m′ the fibres Fm 6' Fm′ and P (Fm, t) does not depend on the m. This is of course
way too much to expect. We will come back to this point later on.

Let X be a Noetherian scheme over an algebraically closed field k. Let f : X → S be a morphism
of finite type of Noetherian schemes. We denote Fs = F|Xs . The sheaf F could be thought of as a
collection of sheaves {Fs} parametrized by S. When we apply this of course we would like that all
of the Xs are isomorphic to X. As mentioned before, instead of trying to classify arbitrary large
set of coherent sheaves, it is wise to fix certain invariants, such as the Hilbert polynomial. It turns
out (see Lemma 2.2) below that when S is reduced and irreducible, specifying that P (Fs, t) does
not vary with s is equivalent to assume that F is a flat OS-module . We have the following

Definition 2.1. A flat family of coherent sheaves on the fibres of f is given by a coherent OX -
module F which is flat over S.

The following proposition justifies why restricting to flat family is a good idea!

Lemma 2.2. Let S be an integral Noetherian scheme. With notation from before the following are
equivalent

1. F is S-flat
2. For all sufficiently large m the sheaves f∗(F ⊗OX(m)) are locally free.
3. The Hilbert polynomial P (Fs) is independent of s ∈ S.

Sketch of the proof. This is [Har77, Theorem 9.9]. Roughly the idea is to localise the problem to
S = SpecA where A is a local Noetherian domain and X = PnA. The statements above then reduce
to almost commutative algebraic statements

1. F is A-flat.
2. For all sufficiently large m, H0(PnA,F ⊗OPnA(m)) is a free module of finite rank.

3. The Hilbert polynomial P (Fs, t) is independent of s ∈ S.

(1)⇒ (2): If F is flat, the terms in the C̆ech complexes computing the cohomology of F(m) are
also flat A-modules. Then use Serre’s vanishing to conclude that H i(PnA,F(m)) = 0 for m ≥ m0

for some large enough m0. Hence H0(PnA,F(m)), the left-most kernel of the C̆ech complex is also
flat and finitely generated and hence free of finite rank.

(2)⇒ (1): This follows since F can be reconstructed from the graded A[x0, · · · , xn]-module⊕
m≥m0

H0(PnA,F(m)).

(2) ⇒ (3) By Serre vanishing we can write P (Fs,m) = dimH0(Xs,Fs(m)) for all m ≥ m0. Now
let m denote the ideal corresponding to the closed point s ∈ S. Then (3) is a consequence of the
isomorphism

H0(X,F(m))⊗ κ(s) ' H0(X,Fs(m)).

To see this, tensor the exact sequence ⊕A→ A→ κ(s) = A/m with F(m) and take global section
and then compare this exact sequence with the one tensored with H0(X,F(m)).

(3)⇒ (2) On a Noetherian local domain (A,m) by the Nakayama lemma one can conclude [Har77,
Theorem II.8.9] that if rkk(s)H

0(Xs,Fs(m)) is the same as the generic rank of H0(X,F(m)), then
it is a free A module. �
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Example 2.3 (Why the integral domain condition is necessary). Let A = k[x]
(x2)

be the ring of dual

numbers and X = P1 × SpecA. Then the sheaf given by the skyscraper sheaf at point of P1 is not

flat over A. Indeed, this is because k[x]
(x2)
→ k is not flat. (Exercise: show this!).

When S is not reduced, the following criterion is often helpful

Lemma 2.4. Let Sred ↪→ S denote the reduced scheme given by the nilpotent ideal I ⊂ OS. Then
F is a flat OS-module if and only if it is flat over Sred and I ⊗OS F → IF is an isomorphism.

We have used the following facts from commutative algebra.

Exercise 4. • Harshrone III.9.1
• Let 0→ F ′ → F → F ′′ → 0 be a short exact sequence of OX -modules. If F is S-flat, then
F ′′ is S-flat if and only if for each s ∈ S the homomorphism F ′s → Fs is injective.

Having established Lemma 2.2 it is natural to expect that given any morphism f : X → S and a
coherent sheaf F on X, there should be a way to split S up into pieces where the Hilbert polynomial
of F restricted to each individual pieces remain constant. When S is reduced and irreducible, such
a decomposition should be flattening stratification of S. Mumford showed that this is indeed the
case and moreover this stratification satisfies the universal property below [HL10, Theorem 2.1.5]

Theorem 2.5. Let f : X → S be a projective morphism of Noetherian schemes and let F be a
coherent sheaf on X. Then we have the following

(1) The set P := {P (Fs, t)|s ∈ S} of Hilbert polynomials of Fs := F |Xs the restriction of F to
the fibre Xs over s is finite.

(2) (Flattening Stratification) There are finitely many locally closed sets SP indexed by P such
that j :

⊔
P∈P

SP → S is a bijection and F |SP is flat over SP with Hilbert polynomial P .

(3) (Universal Property) If g : S′ → S is a morphism of Noetherian schemes and g∗XF is flat
over S′ with Hilbert polynomial P (Fs′ , t) = P for all s′ ∈ S, then g factors through SP → S
and in particular through j.

The first part of Mumford’s theorem was shown by Grothendieck. He showed that there exists
a flattening stratification in the sense that there exists pairwise disjoint finite cover {Si} by locally
closed subsets of S such that Fi := F|Si is flat over Si, which implies the first part of Theorem 2.5.

Proof. We first show Grothendieck’s statement above. The idea is to use results from commutative
algebra to reduce the problem to generic flatness of morphism of schemes of finite type. We may and
do assume that S is irreducible. Moreover, since the problem is local we assume that S = SpecA
and X = SpecB where B is a finitely generated A algebra. Finally, since we want to find an open
set U ⊂ S such that F is flat over U red, it is enough to assume that A is integral.

Let F be given by the sheafification of the finitely generated B-module M . Since M is a finitely
generated B-module, a basic fact from commutative algebra [Mat87, Theorem 6.4] implies that M
admits a filtration with quotients isomorphic to B/pi for prime ideals pi

6. Since B/pi is an integral
domain, we reduce to the case when B = M is an itegral domain and A → B injective. Recall
that the quotient field K(A) of A is given by inverting all elements of A but 0. Then by Noether’s
normalisation theorem there exists finitely many elements b1, · · · , bn such that K ⊗A B is a finite
module over K(A)[b1, · · · , bn]. Clearing denominators we may find f ∈ A such Bf is a finite module
over the polynomial ring Af [b1, · · · , bn]. Since finite extensions are flat and the polynomial ring
Af [b1, · · · , bn] is flat over Af we obtain that Bf is flat over Af . We continue by restricting F over
X \ Spec(Bf ) to find the remaining locally closed sets Si.

6Here pi’s are associated primes of M . Exercise: Show this fact! Hint: if M ′ ⊂ M is the maximal sub-module
that admit such filtration then an associpated prime of M/M ′ would contradict maximality of M ′.
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Since the fibres of f is quasi-compact and S is of finite dimension, this process will stop. Pulling
back to the disjoint union under the natural map j : ti Si → S we note that j∗F is flat over tiSi
and hence the P (Fs, t) is locally constant with repect to s ∈ tiSi. Thus set P in the statement of
the theorem is indeed finite and Si’s can be reindenxed by SP for each P ∈ P. �

To see the universal property in (3) we need the following

2.2.1. Key Observation. Let F be a coherent sheaf on a Noetherian scheme S. Then the flattening
stratification for F (i.e. f = id: S → S) is simply saying that the locus where rank of F (or the
dimension of the fibre of F ) remains constant. In particular, the flattening stratification coincides
with locally closed stratification {Sr} of S such that F |Sr is locally free of rank r. In this case the
universal property (3) is rather easy to observe. Let s ∈ Sr, i.e. the dimension of the fibre at s,
i.e. dimF ⊗ κ(s) = r for some positive integer r. Then there exists an open set U around s, such
that the basis of F ⊗ κ(s) lifts to sections O⊕rU . Note that since S and hence U is Noetherian, the

kernel K of this lifting O⊗rU → F |U is finitely generated. Say r1 is its dimension at s. By possibly
shrinking U we consider the following exact sequence

O⊕r1U

ψ−→ O⊕rU → F |U .

Note that, restricted to the point s, the map on the right is an isomorphism by definition. Hence
the matrix of ψ(s) = (ψij(s)) = 0. Let Z ⊆ U be the scheme defined by simultaneous vanishing
locus Z(ψij). Thus Sr ∩ U = Z.

Moreover, pulling this back under any morphism g : S′ → S we obtain

O⊕r1
g−1(U)

g∗ψ−−→ O⊗r
g−1(U)

→ g∗F |g−1(U).

Now g∗F is locally free of rank r if and only g∗ψ = 0 if and only if ψ = 0. Thus g must factor
through Z ⊂ U .

To see this in action, consider the ideal sheaf m = (x, y) of the origin in A2 = Spec k[x, y]. Then
on S1 := A2 \ {(0, 0)} we have m|S1 ' OS1 and at (0, 0), m/m2 is of rank 2.

The strategy for proving the universal property in Theorem 2.5 (3) for any morphism f is to
interpret the flattening stratification {Si} in (1) in terms of the flattening stratifications of f∗F (m)
for m large enough.

Proof of (3). Let F ′ := j∗F on
⊔
P∈P

SP . By Lemma 2.2 we know there exists m0 such that for all

m ≥ m0, f∗F
′(m) is locally free on SP for all P ∈ P. Moreover by Serre’s vanishing m0 can be

chosen large enough such that Rif∗F
′(m) = 0 for all i > 0. Thus f∗F

′(m) is locally free of rank
P (m). Thus we have

SP :=
⋂

m≥m0

Sm,P (m)

where Sm,P (m) := {s ∈ S|f∗F (m) is locally free at s of rank P (m)}. Indeed, the inclusion Sm,P (m) ⊇
SP follows from the fact that f∗F (m) is locally free on SP and the key observation. The equality
follows since the Hilbert polynomial is a numerical polynomial determined by its values P (m) for
m� 0.

As noted in the Key observation, the sets on the right hand side are locally closed subschemes.
Since S and hence any open subscheme U are assumed to be Noetherian the intersection on the
right hand side is finite.

Now let g : S′ → S be such that g∗XF is flat over S′ with Hilbert polynomial P . Consider the
following diagram
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XS′ X

S′ S

gX

f ′ f

g

(4)

By Lemma 2.2 this is equivalent to saying that for m large enough f ′∗g
∗
XF (m) is locally free. We

will see in Lemma 2.6 that there exists m0 depending on g such that f ′∗g
∗
XF (m) ' g∗f∗F (m). If m0

is selected while taking into account the above-mentioned properties of F (m), from Key observation
it is evident that g factors through the intersection of Sm,P (m) for all m ≥ m0 and hence through
SP .

�

2.3. A base change property. We prove the result employed at the end of the proof. Remember
that when a map g : S′ → S is flat, using notations in (4) we have the isomorphism f ′∗g

∗
XF ' g∗f∗F .

However when g is not necessarily flat but f is a projective morphism of Noetherian schemes, at
the expense of twisting F by a relatively ample line bundle enough number of times we can ensure
that base change still holds. This is the content of the next result.

Lemma 2.6. Let f : X → S be a projective morphism of Noetherian schemes, let OX(1) be a line
bundle on X which is very ample relative to S , and let F be a coherent OX-module. Then for
m� 0

f ′∗g
∗
XF (m) ' g∗f∗F (m).

Proof. Let S = SpecA and X = PnS = ProjA[x0, · · · , xn]. The OS algebra

ΓX := ⊕m≥0H
0(Pnk ,O(m))⊗OS

recovers OX as a OS algebra. Similarly, the graded ΓX -module ΓX,F := ⊕m≥0f∗F (m) recovers the
OX -module F . This reconstruction functor is inverse to the functor ΓX, .

This construction is also functorial. This means for any map g : S′ → S, the graded ΓS′-module
g∗ΓX,F = ⊕m≥0g

∗f∗F (m) recovers g∗XF . Thus g∗XF can be reconstructed from ΓS′-modules

ΓXS′ ,g∗XF and g∗ΓX,F .

By [Har77, Ex. II.5.14(c)] we conclude that there exists m0 such that for all m ≥ m0,

f ′∗g
∗
XF (m) ' g∗f∗F (m)

�

3. A glimpse toward semistability: Curves

Definition 3.1 (Slope of a vector bundle). A vector bundle E on a smooth projective curve C over
an algebraically closed field k of rank r and degree d := deg

∧r E is said to have slope

µ :=
d

r
.

Then we have

Definition 3.2 ((semi)-stable vector bundles). A vector bundle E on a smooth projective curve C
of rank r and degree d is called semistable (resp. stable) if for any subbundle 0 6= F ↪→ E , we have
µ(F) ≤ µ(E) (resp. µ(F) < µ(E)).



10 YAJNASENI DUTTA

Remark 3.3 (stability via reduced Hilbert polynomial). Define the reduced Hilbert polynomial to
be the Hilbert polynomial divided by its leading coefficient. On curves we have

p(E , t) =
P (E , t)
r

= t+
d

r
+ (1− g).

Thus (semi)-stability may also be defined as p(F) ≤ p(E) (resp. p(F) < p(E)). In higher dimensions
this definition generalises to the so-called Gieseker stability. We will come back to this point.

3.1. Some basic properties of bundles. Lets analyse some immediate and not-so-immediate
properties of stability. We will revisit this again in higher dimension. For now, consider them as
exercises.

(1) Note that F ⊂ E ⇒ rk(F) ≤ rk(E). Thus if µ(F) < µ(E) and rk(F) < rk(E), the degree of
F must seriously compensate by being much smaller that deg(E).

(2) similarly if F ⊂ E and µ(F) > µ(E), it must be the case that rk(F) < rk(E). Indeed,
otherwise E/F would be supported along points and deg E = degF + length(E/F) where
length(E/F) is the sum of the dimensions of all the sky-scraper sheaves E/F .

(3) Saturated subsheaf: A subsheaf F ⊂ E can be chosen so that E/F is torsion free, hence
locally free on C. The remark above suggests that on curves saturation of a subsheaf of
same rank is isomorphic.

(4) A bundle E is (semi-)stable if and only if fall quotient bundles, i.e. E →→ G satisfy µ(G)(≥
-) > µ(F).

(5) If E and F are stable vector bundles and µ(E) = µ(F), then any non-trivial homomorphism
ϕ : E → F is an isomorphism. In particular Hom(E , E) ' k (i.e. E is simple). In particular,
all line bundles are stable.

(6) The category SS(µ) of semistable bundles of a fixed slope µ is abelian.
(7) Every semi-stable bundle E admits a Jordan–Hölder filtration (JH), namely a filtration by

subbundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ E` = E
such that the graded pieces gri(E) := Ei/Ei−1 are stable with slope µ(E).

(8) S-equivalence: The filtration is not unique but the graded bundle gr•(E) := ⊕igri(E) does
not depend on the filtration. Moreover, for two semi-stable sheaves E and E ′ if gr•(E) '
gr•(E ′) then we say they are S-equivalent and do not distinguish them in the Moduli space.
For instance, any non-trivial extensions E of two line bundles L1 by L2 of degree d is
semistable and the Jordan–Hölder filtration is given by L2 ⊂ E . Thus in the separated
moduli we see only one point L2 ⊕ L1.

(9) When E is not even semi-stable, a unique filtration by semistable sheaves exists. This is
called the Harder-Narasimhan (HN) filtration and is an increasing filtration by subbundles

0 = B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ B` = E

such that griE := Bi/Bi−1 is a semistable sheaf with slope µi satisfying

µmax(E) := µ1 > · · · > µ` =: µmin(E)

Exercise 5. Show Property (4) above, i.e. show that given a short exact sequence of vector bundles
0→ F → E → G → 0 µ(F)(≤) < µ(E) if and only if µ(E)(≤) < µ(G).

3.2. Properness: Langton’s theorem. The result of Langton gives additional justifications for
why (semi)-stable sheaves are just the right choice. The result says even without constructing the
moduli space we can tell that the space (if exists) will be compact7. In other words, he gives a
recipe to fill-up any non-compact family of (semi-) stable sheaves over a punctured disc to a family

7Nowadays this follows from GIT construction of the moduli.
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over the entire disc whose central fibre is semi-stable. In algebraic language this is called the the
valuative criterion for properness. Recall [Har77, Chapter II.4]

Proposition 3.4 (Valuative criterion for properness). Let f : M → Spec k be a noetherian scheme
of finite type over a field k. Then M is proper if and only if for any discrete valuation ring R
with maximal ideal m = (m), k ' R/m and quotient field K, any morphism Spec(K)→ X extends
uniquely to Spec(R). In other words, there exists a unique morphism Spec(R) → X such that the
following diagram commutes

Spec(K) M

Spec(R) Spec k

f
∃!

Theorem 3.5 (Langton’s theorem). Let C be a smooth projective curve over an algebraically closed
field k. Let (R,m) be a discrete valuation ring with R/m ' k and K = the field of fractions of R.
Let F be a vector bundle on C × SpecR flat over R such that FK is semi-stable. Then there exists
a subsheaf E ⊂ F such that EK = FK and Ek is semistable.

Remark 3.6. Technically we should start with a flat family FK of sheaves over CK := C × SpecK
and proceed by first completing it to F and then showing that F can be chosen so that Fk is
semi-stable. Note that, one can always extend the coherent sheaf to F ′ on XR such that F ′K ' FK .
Let F ′∨∨ denote the double dual of F ′, i.e. Hom(Hom(F ′,OCR),OCR). Then it is torsion free.
Torsion free sheaves are flat over DVR. So we let F := F ′∨∨.

On curves, torsion-free coherent sheaves are locally free. As a result, we do not need to consider
non-locally free sheaves on curves. However, in higher dimensions, allowing pure sheaves becomes
critical. All of the preceding notions generalise to pure coherent sheaves. These are similar to
torsion free sheaves; torsion-free along their support.

Proof of Theorem 3.5. Suppose we cannot find such E. This means we can construct a chain of
subsheaves F ⊃ F 1 ⊃ F 2 ⊃ · · · such that F iK ' FK but none of F ik’s on the curve Ck are
semistable. Thus Fnk will always admit a destabilizing sub-sheaf (or, equivalently quotient sheaf).
If we construct this chain strategically and inductively, we will show that eventually we can find a
destabilzing quotient sheaf of FnR/mn for n large enough. Hence of Fn

R̂
. Lets first argue this.

Say Fn has already been constructed. Since Fnk is not semi-stable, one can fine a HN filtration
of Fnk , such that Bn is the smallest piece or equivalently the maximal destabilising subbundle. Said

differently, we have µ(Bn) > µ(Fn) as well as for any other B̃n ⊂ Fnk , µ(B̃n) < µ(Bn).
Let Gn := Fnk /B

n and note that µ(Gn) > µ(Fnk ), i.e. the quotient Gn destabilises Fnk . Define
the next step

Fn+1 := ker(Fn → Fnk → Gn).

First note that Fn+1 ⊂ F is a sub-module of an R-flat module and hence is itself R-flat8. Further-
more, we have a short exact sequence

0→ Fn+1 → Fn → Gn → 0

restricting to the special point, i.e. tensoring ⊗R Spec(k) we get

0→ TorR1 (Gn, k)→ Fn+1
k → Fnk → Gn → 0.

The exactness on the left follows from the fact that F is flat over R. The right-most map factors
through Fnk , truncating there we obtain

0→ TorR1 (Gn, k)→ Fn+1
k → Bn → 0. (5)

8R is a discrete valuation ring and hence a PID, so flat = torsion free.
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Compute TorR1 (Gn, k) using the free resolution R
·m−→ R → k where m = (m). We obtain

TorR1 (Gn, k) ' Gn. Thus we can see Gn as a subsheaf of Fn+1
k .

Assume that Bn+1 ⊂ Fn+1 is like before the maximal saturated destabilising subsheaf of Fn+1.
Let Cn = Bn+1 ∩Gn. We have µ(Cn) < µ(Bn). An inequality follows from maximality of Bn but
the strict inequality is due to the fact that µ(Cn) ≤ µmax(Gn) < µ(Bn). Thus rk(Cn) < rk(Bn)
and eventually Cn = 0.

On the other hand, since we have the inclusion

Bn+1/Cn ⊆ Fn+1
k /Gn ' Bn,

Eventually we have Bn+1 = Bn for n large enough; we denote this OCk -module by B. Thus

inclusion Bn ↪→ Fn+1
k and the short exact sequence (5) is split. we have for all n large enough

Fnk = B ⊕G, as Gn’s also stabilize to G.
We now ignore all Fn’s for n small and assume that Fnk ' B⊕G for all n ≥ 0. The goal now is to

extend G over to the thickened point SpecR/mn. To this end, let Qn = F/Fn be the R/mn-module.
Note that it is a quotient of F/mnF . Furthermore, comparing the sequence Fnk = B⊕G→ Fn−1

k =

B⊕G→ G→ 0 to 0→ B → Fn−1 → G→ 0, we obtain that the maps F i → F j is given by idB ⊕0.
Hence Fk/F

n
k ' Qnk ' G. One can check that Qn is a flat R/mn-module and hence, FR̂ → QR̂ is a

quotient such that the Hilbert polynomial P (QR̂) = rk(G) · µ(G) + (1− g) = P (G).
At this point we use the fact that the Quot functor QuotCR/R(F, P (G)) of quotients of F on

CR with slope Hilbert polynomial P (G) satisfies faithfully flat descent and R → R̂ is faithfully
flat. Thus there exists a quotient F →→ Q on CR such that P (Q) = P (G). Pulling back to K, we
found FK →→ QK such that µ(QK) = µ(G). That QK destabilise FK follows from the fact that
G destabilises Fnk . Indeed, note that µ(QK) = µ(G) > µ(Fnk ) = µ(FK). The last equality follows
since F and Fn’s are flat over R, µ(Fk) = µ(Fnk ) = µ(FK).

�

Back when Langton proved this theorem, the moduli space of semistable sheaves in dimension
> 1 was not constructed yet. Thus his result established the fact that semistability was indeed the
optimal choice for obtaining proper moduli.

4. The Grassmannian and Grothendieck’s Quot scheme

In this part, we will look at an intriguing classification problem. A moduli space that exists and is
used as a building block to solve a variety of moduli problems, including our own semistable sheaves
moduli. This entails classifying all subsheaves with a fixed Hilbert polynomial P of pullbacks of a
fixed coherent sheaf F on a fixed k-scheme S of finite type. The easiest case is when S = Spec k
and we consider the r-dimensional quotient spaces of a fixed k-vector space V of dimension n. In
this case the moduli space is the Grassmannian variety Gr(r, V ). Define the moduli functor

Gr(r, V ) : (Sch/k)op → Sets

by
S 7→ {O⊕nS →→ E|E is locally free of rank r}/ ∼ .

Here we identifyOS⊗V ' O⊕nS and the relation∼ is given by an isomorphism E ' E ′ that commutes
with the surjection OS⊗V →→ E . We will learn that this functor is representable (see Theorem 4.5)
by the well-known scheme Gr(r, V ), the Grassmannian of r-dimensional linear quotient-spaces of
V . To see how it can be endowed with the structure of a variety consult [Ses07, Chapter 1].

4.1. Moduli and representability. Let C be any category. Given an object X ∈ C , consider
the functor of points associated to X, denoted by

hX : C op → Sets

defined by sending T → HomC (T,X).
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The functor category Func(C op,Sets) or the category of presheaves is a category whose objects
are the functors F : C op → Sets and whose morphisms are the natural transformations Nat(F1, F2)
between functors. This category can be thought of as an enlargement of C via the Yoneda lemma

Exercise 6 (Yoneda). For any object X ∈ C and any functor F : C → Sets, there is a bijection (in
Sets) between

Nat(hX , F ) = F (X)

given by sending ξ 7→ ξ(idX).9

In particular, the functor of points h : C → Func(C op,Sets) given by X 7→ hX is fully faithful,
i.e. it embeds C as a full subcategory of Func(C op,Sets).

A priori, our moduli functor would be an element of Func(Schop,Sets). The problem of repre-
sentability measure how far it is from being naturally isomorphic to a functor of points.

Definition 4.1. A functor F : C op → Sets is said to be corepresentable by X if there exists an
object X ∈ C op and a natural transformation (or a morphism in Func(C op,Sets)) α : F → hX
such that for any other object X ′ ∈ C op and a morphism α′ : F → hX′ there is a transformation
β : hX → hX′ so that α = β ◦ α′.

The functor F is said to be universally corepresentable by X if for any T ∈ C op transformation
φ : hT → hX the fibre product FT := hT ×hX F is corepresented by T .

The functor is representable if it is universally corepresentable by X and the transformation
α : F → hX is an isomorphism in Func(C op,Sets).

For us C = Sch/k or Sch/S for some noetherian scheme S of finite type. A moduli problem
(e.g. Gr(r, V ) above) will be a functor

P : (Sch/k)op → Sets

When P is representable by a scheme P , we say P is the fine moduli space associated to P.
We say a scheme P is a coarse moduli of P, if P is universally corepresentable by P and

α(k) : P(Spec k)→ hX(Spec k) is a bijection.

Exercise 7. If X corepresents (resp. univ. corepresents) a functor, show that it is the unique object
of C that does so.

Example 4.2. The functor

Γ: (Sch/k)op → Sets

given by T 7→ Γ(T,OT ) is represented by A1
k. Indeed, hA1(Y ) := {f : Y → A1}, which is the set of

holomorphic functions on Y 10.

Exercise 8. Find a scheme that represents T 7→ Γ(T,O∗T ).

4.2. A representability criterion. First and foremost, in order for P to be representable it
should “glue” in the Zariski topology. More precisely, for any k-scheme X and for any Zariski open
set U ⊂ X, the presheaf U 7→ P(U) must form a sheaf, i.e. for any Zariski cover of {Ui} of S, if
two elements a, b ∈ P(S) satisfy a|Ui = b|Ui for all i then a = b, furthermore if for the collection of
elements ai ∈ Ui, we have ai|Ui∩Uj = aj |Ui∩Uj then there exists a ∈ P(X) such that a|Ui = ai. This
condition is usually summed up by saying the following diagram is an equaliser

P(X)→
∏
P(Ui) ⇒

∏
i,j

P(Ui ∩ Uj).

9Hint: If ξ1(id) = ξ2(id), for any A ∈ C and ϕ ∈ hX(A), draw diagrams applying ξi : hX → F on the arrow
ϕ : A→ X.

10One can replace k by S
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In addition to being sheaf in the Zariski site, if P admits a cover by representable open subfunctors
{Pα}α∈I , the original functor is representable. We will see this shortly in Lemma 4.4 and use this
to show that the Grassmannian functor Gr(r, V ) is representable. But first let us define what these
terminologies mean.

Definition 4.3. A subfunctor P ′ ⊂ P is a functor such that for any S ∈ C op, P ′(S) ⊂ P(S).
Furthermore, P ′ is said to be open subfunctor (resp. closed) if for any scheme T admitting a
natural transformation hT → P the pull-back functor hT ×P P ′ is representable by an open (resp.
closed) subscheme T ′ ⊂ T .

In moduli language this means that the natural transformation given by the inclusion P ′ ⊂ P is
representable. Note that this is different from representability of P ′ itself.

Exercise 9. Let P ′ ↪→ P be a subfunctor of P such that the inclusion is representable. If P is
representable, show that P ′ is also representable.

Lemma 4.4. Let P : (Sch)op → Sets be a functor that is a sheaf in the the Zariski topology. The
functor P is representable if additionally there exists a collection of representable open subfunctors
{Pα}α∈I such that they cover Pα( i.e. for every scheme T together with a nartual functor ξ : hT → P,
the collection of open subschemes {Uα} representing {Pα ×P hT } covers T ).

Proof. Let Xα be a scheme representing Pα. The goal is to glue Xα’s to construct a scheme X that
would represent P. By Yoneda we have Hom(hXα ,Pα) = Pα(Xα). Let ξα ∈ Pα(Xα) ↪→ P(Xα)
be the image of idXα . Since the inclusion Pα ↪→ P is also representable, the pull back Pα′ ×P Xα

is representable by an open subscheme Xα,α′ ⊂ Xα. Similarly Xα′,α represents the pullback of
the inclusion Pα′ ↪→ P to the scheme Xα′ . Hence Xα,α′ and Xα′,α both represent the functor
hXα ×P hXα′ and thus are isomorphic. Let us denote this isomorphism by ϕα,α′ : Xα,α′ → Xα′,α

and note that P(ϕα,α′)
∗ξα = ξα′ . Note also that the last condition uniquely determines ϕα,α′ .

In order to glue Xα’s along these isomorphisms, we need the cocyle condition. To make sense of
it, first note that the open sets

Xα,α′ ∩Xα,α′′
ϕα,α′' Xα′,α ∩Xα′,α′′

are isomorphic. By Yoneda’s lemma ϕα,α′ satisfies the cocycle condition

ϕα′,α′′ ◦ ϕα,α′ = ϕα′,α′′ .

Indeed, by construction, P(ϕα,α′)P(ϕα′,α′′)ξα = P(ϕα′,α′′)ξα = ξα′′ . Hence we can glue {Xα} to
construct X. Note also that since P is a sheaf in the Zariski topology, ξα’s glue to give ξ ∈ P(X)
the unique representative of idX .

To see that X represents P, we need to construct a map P → hX that is an isomorphism. Pick
ξ′ ∈ P(T ) for some scheme T . By representability of the inclusion Pα ↪→ P, we obtain ξ′α ∈ Pα(Tα)
and by representability of Pα, we view this as gα : Tα → Xα. By a similar compatibility argument
as above, also glue together to g : T → X. Since P(g)ξα = ξ′α for each α, P(g)∗ξ = ξ′ hence g is
unique. To see surjectivity, given any element g : T → X, define ξ′ := P(g)(ξ) �

4.3. The Grassmannian.

Theorem 4.5. The Grassmannian is representable by a projective k-scheme Gr(r, V ).

Proof. We use the criterion for representability in Lemma 4.4. Define the collection of subfunctor
GW indexed by all subspace W ⊂ V of dimension r 11 by

GW (S) := {[ϕ : OS ⊗ V →→ E ] ∈ Gr(r, V )(S)|∃ an isomorphism OS ⊗W ↪→ OS ⊗ V →→ E}/ ∼ .

11if you want to be economical, it is enough to fix a basis for V and consider all subspace spanned by basis vectors
with indices from size r subset of {1, · · · , n}
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We want to show that GW ’s are representable and form an open cover of Gr(r, V ). The repre-
sentability comes for free, since the isomorphism given by the composition OS⊗W ↪→ OS⊗V →→ E
splits the first injection and is thus determined via the splitting OS ⊗ V →→ OS ⊗W . The splitting
is determined by first fixing n − r dimensional complement W ′12 of W and then determining the
ways to project these to W . Thus it is given by the affine space AW := Endk(W

′,W ) of dimension

Ar(n−r).
To see openness, given W ⊂ V and an element [ϕ : OS ⊗ V →→ E ] ∈ Gr(r, V )(S), we consider the

maximal set of points SW ⊂ S such that for all x ∈ SW the inclusion OS⊗W ↪→ OS⊗V composed
with ϕ pulled back under {x} ↪→ X is an isomorphism. We claim that this set is open. Indeed,
consider the exact sequence

0→ K → OS ⊗W → E → Q → 0

where K and Q are kernel and cokernel of the composition. Since the support of the coherent
sheaves K and Q are closed, on the complement we have an isomorphism. This is SW . Thus
[ϕ|SW ] ∈ GW (SW )13. Finally, we want to show that SW represents GW,S := hS ×Gr(r,V ) GW , i.e.
given a morphism of schemes f : U → S, [f∗ϕ] ∈ GW,S(U) if and only if f factors through SW . One
direction is easy since pullback of an isomorphism of vector bundle remains an isomorphism. To
see the converse, let [f∗ϕ] ∈ GW,S(U), i.e. f∗ϕ : OU ⊗W → f∗E is an isomorphism, or equivalently
f∗Q = 0. Since the stalk of f∗Q at any point x ∈ U is spanned by the same number of elements
as the dimension of the fibre f∗Q ⊗ κ(x) and this dimension is the same that the dimension
Q ⊗ κ(f(x)), we conclude that f∗ϕ is surjective at x if and only if ϕ is surjective at f(x) or
equivalently f(x) ∈ SW . Hence the image of f lies in SW .

Finally, we argue that GW ’s cover Gr(r, V ), or equivalently SW ’s cover S. This is a statement
solely about locally free sheaves. Indeed, note that for any s ∈ S, there exists a Zariski open
set s ∈ U ⊂ S such that E|U ' OkU . Hence we obtain a surjection given by the composition

OU ⊗ V →→ E|U ' OkU . We let W be determined by the kernel of the restriction of this to the
residue field κ(s), i.e. W := Ker(κ(s)⊕n →→ E ⊗ κ(s) ' κ(s)⊕r) and then consider it as a vector
space over k via the extension k ↪→ κ(s). Then SW ⊃ U . Finitely many such U and thus SW ’s
cover S.

We have shown that the Grassmannian is representable. Lets call the scheme representing the
Grassmannian Gr(r, V ). We are now left to show the projectivity of Gr(r, V ). First we use the
valuative criterion to show that it is proper over Spec k. First note that Gr is of finite type over k.
Indeed it is covered by affine varieties of the form Endk(V,W ). Secondly, consider a dvr R over Z
with fraction field K. We have

SpecK Gr(r, V )

SpecR Spec k

Since Grk(r, V ) represents the Grassmannian, the top horizontal arrow gives a surjection K⊕n →→
W , where W is a K-vector quotientspace of rank r. To see properness, we want to argue that there

is a unique way to lift this surjection R⊕n →→ W̃ for a unique lift of W to a free R-module W̃ . The

choice is somewhat obvious, namely we let W̃ to be W with the induced module structure coming

from R→→ K and W̃ ⊗R K 'W by Exercise 10.
To see projectivity note that the map Gr(r, V )→ hPk(∧rV ) defined by

[OS ⊗ V →→ E ] 7→ [OS ⊗
r∧
V → det(E)]

12The economical approach would have come in handy here
13In fact we do not need to worry about K since surjectivity of locally free sheaves of same rank implies isomor-

phism. Show this!
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is a monomorphism; the so-called Plücker embedding. Indeed, on the open set SW we have an
isomorphism given by the composition OS⊗W ↪→ OS⊗V →→ E and as seen before it is determined
by the splitting OS ⊗ V →→ OS ⊗ W that sends OS ⊗ W to itself. This determines a splitting
OS ⊗ ∧rV →→ det E ' OS ⊗ detW ' OS , which in turn gives

(
n
r

)
global sections of OS and thus is

represented by A(nr) (see Exercise 9). The affine spaces GrW subschemes of Gr(r, V ) representing

GrW embeds in A(nr). This together with the fact that Gr(r, V ) is proper implies that it is a
projective scheme. See [Ses07] for more details on Plücker embedding.

�

Exercise 10. Let i : A ↪→ B be a morphism of rings. When is B⊗AB ' B? Find an example when
it is not the case. Show that when B = S−1A for some multiplicatively closed set S ⊂ A then it is
the case.

The construction is functorial, i.e. in place of V we could start with a free Z-module and ev-
erything said above would work over Z. Furthermore of Grassmannian can be extended to include
locally free quotients of a fixed rank of any coherent sheaf V on a k-scheme S of finite type. The
updated functor would look as follows:

Gr(r,V) : (Sch/S)op → Sets

defined by

(f : T → S) 7→ {[ϕ : f∗V → E ]|E is locally free on T of rank r}/ ∼
This functor is representable by a projective S-scheme GrS(r,V). When V ' O⊕nS , GrS(r,V) '
S × Gr(r, k⊕n). The scheme GrS(r,V) is constructed by reducing the problem to this case. For
more detail see [HL10, p. 42].

Remark 4.6 (PnZ as Grassmannian). It is well-known that PnZ ' GrZ(1, V ) for V = Z⊕n. In this new

light, we can view PnZ as the scheme representing the function T 7→ {O⊕n+1
T →→ L}/ ∼ for some line

bundle L.

Remark 4.7 (The universal bundle). Since Gr(r, V ) represents Gr(r, V ), i.e. there exists an isomor-

phism Gr(r, V )
∼−→ hGr(r,V ), the universal object ξ ∈ Gr(r, V )(Gr(r, V )) corresponding to idGr(r,V )

is given by ξ : OGr(r,V ) ⊗ V → U . The bundle U is called the universal bundle or the tautological
bundle of the Grassmannian. The fibres of U at a point [V →→W ] ∈ Gr(r, V ) is given by W . Simi-
larly, for any k-scheme S, the element [ϕ : OS⊗V →→ E ] ∈ Gr(r, V ) are in one-to-one correpondence
with the datum of a map uϕ : S → Gr(r, V ). Furthermore we have u∗ϕξ = ϕ. This is all Yoneda.

4.4. The Quot. The goal of the Quot functor is to classify quotients that are compatible with a
fixed family f : X → S.

Definition 4.8. Given a projective S-scheme f : X → S and a coherent sheaf V on X, the Quot
functor

QuotX/S(V, P ) : (Sch/S)op → Sets

is defined by

(p : T → S) 7→ {[VT →→ F ]|F is a T -flat coherent sheaf on XT := X ×S T with P (Ft) = P}/ ∼ .

Here ∼ is given by an isomorphism F ' F ′ that is comptible with the projections p∗V →→ F and
p∗V →→ F ′ and VT := p∗V.

Example 4.9. Let X = Pnk and S = Spec k, the set QuotPnk (O⊕rPnk
, P )(T ) consists of T -flat coherent

sheaves F on PnT together with a surjection of OPnT -modules O⊕rPnT
→→ F such that restricted to any

closed fibre Pnκ(t), we have P (Ft) = P .
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Exercise 11. Show that QuotX/S(V, P ) satisfies fppf descent, i.e. ui : Ti → T be a collection of
finitely presented, faithfully flat maps such that fi(Ti) covers T then show that the following
diagram is an equaliser

QuotX/S(V, P )(T )→
∏
i

QuotX/S(V, P )(Ti) ⇒
∏
i,j

QuotX/S(V, P )(Ti ×T Tj)

4.4.1. Castelnuovo–Mumford’s m-regularity. Various properties of flat sheaves on a projective fam-
ily f : X → S over a Noetherian scheme S that we have studied in §2 will come in handy at this
point. Recall that given a coherent sheaf F on X we know that F is S-flat if and only if f∗F (m)
is locally free for m � 0. In this section we will get a better hold on m based on the Hilbert
polynomial of F |Xs . To this end we recall the following

Definition 4.10. Given a projective variety (X,OX(1)) with a fixed polarisation OX(1), a coherent
sheaf F is said to be (m-regular with respect to O(1)) if H i(X,F (m − i)) = 0 for all i > 0. The
smallest such m is the CM-regularity (or m-regularity) of F and denoted by regOX(1)(F ), when

there is a no room for confusion, we simply write reg(F ).

Example 4.11. A line bundle L ' OPn(−`) on Pn is `-regular. Indeed, H i(Pn,O(`)) = 0 for i > 0
unless i = n and ` ≤ −n − 1 (Exercise!). Thus, in order for Hn(Pn,O(m + ` − n)) to be zero, we
need that m+ `− n > −n− 1.

Exercise 12. Given a hypersurface i : X ↪→ Pn of degree d, show that the coherent sheaf F := i∗OX
is d− 1-regular with respect to O(1).

The m-reularity indicates at which point cohomological complexities of F vanish. This is captured
by the following result of Mumford.

Theorem 4.12. If F is m-regular then F (m) is globally generated. Furthermore, the multiplication
map

H0(X,F (m))⊗H0(X,OX(k))→ H0(X,F (m+ k))

is surjective for all k ≥ 0.

Proof sketch. For details see [Laz04, Thm. 1.8.3]. For k � 0, the sheaf F (m + k) is globally
generated, i.e. the evaluation map

H0(X,F (m+ k))⊗OX
ev−→ H0(X,F (m+ k))

is surjective. Assume the surjectivity of in the second part of the theorem, we obtain

H0(X,F (m))⊗H0(X,OX(k))⊗OX(−k)→→ H0(X,F (m+ k))⊗OX(−k)→→ F (m).

The composition factors through the surjection

H0(X,F (m))⊗H0(X,OX(k))⊗OX(−k)→→ H0(X,F (m))⊗OX .
Hence we obtain H0(X,F (m))⊗OX →→ F (m), i.e. F (m) is globally generated.

Thus it is enough to show the second part. Consider the evaluation

V ⊗O(−1)→→ O
and the Koszul complex associated to it

0→
n+1∧

V (−n− 1)→ · · ·
2∧
V (−2)→ V ⊗O(−1)→→ O

Since F is m-regular, H i(Pn,
∧i V (m − i) ⊗ F ) = H i(Pn, F (m − i))⊕

(n+1
i )

= 0. This shows the
desired surjection from the sequence obtained by tensoring the Koszul complex with F (m+ 1) and
taking cohomologies. �
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The following result shows that m-regularity of certain sheaves behave well in flat family, in the
sense that it only depends on the Hilbert polynomial.

Lemma 4.13 (m-regularity in family). For any p, n ∈ Z≥0 there exists a polynomial mp,n(t1, · · · , tn)
with integral coefficients such that for any coherent sheaf F on Pnk together with a surjection

q : O⊕pPn →→ F , if the Hilbert polynomial of F is written in terms of binomial coefficients as

P (F, r) =
n∑
i=0

ai

(
r

i

)
where ai ∈ Z, then F is m-regular for m = mp,n(a0, ..., an).

Proof. We show this by induction on n. The case n = 0 being the case of a point, the theorem is
true for any polynomial m. In general, let H be a very general hyperplane in X = Pn such that

H does not contain any associated points of F . Then T orOX1 (F,OH) = 0. Thus we obtain a short
exact sequence

0→ Ker(q)|H → O⊕pH → F |H → 0.

This is the main framework for the induction. Lets estimate χ(F |H) using 0 → F (−H) → F →
F |H → 0. We have for m� 0

P (F |H ,m) = P (F,m)− P (F,m− 1) =
n−1∑
i=0

bi

(
r

i

)
This is again a numerical polynomial written with coefficients bi(a0, · · · , an), polynomial in ai. By
induction there exists m0 := mp,n−1(b0, · · · , bn) such that F |H is m0-regular. From the long exact
sequence of cohomology we get

H0(X,F (m))→ H0(X,F |H(m))→ H1(X,F (m− 1))→ H1(X,F (m))→ 0.

Indeed, by m0-regularity H1(X,F |H(m)) = 0 for m ≥ m0 − 1. Similarly, H i(X,F (m − 1)) '
H i(X,F (m)) for i ≥ 2 and m ≥ m0−1. Increasingm this way, by Serre vanishing we getH i(X,F (m−
1)) ' H i(X,F (m− 1 + k)) = 0 for k � 0. Thus

H i(X,F (m)) = 0 for for i ≥ 2 and m ≥ m0 − 2.

For i = 1, first note that h1(X,F (m−1)) ≥ h1(X,F (m)). If equality holds for some m ≥ m0, we
have a surjection H0(X,F (m))→→ H0(H,F |H(m)). We claim that it implies H0(X,F (m+ i))→→
H0(H,F |H(m+ i)) are surjective for all i ≥ 0. Hence from this step onwards h1(X,F (m−1+ i)) =
h1(X,F (m + i)). Since h1(X,F (m + i)) = 0 for i � 0, this implies already h1(X,F (m)) = 0. So
until that happens, it must be the case that h1(X,F (m − 1)) > h1(X,F (m)), i.e. the dimension
drops at every step. This means for m = m0 + h1(X,F (m0)) we must have h1(X,F (m)) = 0.

To see the claim in the previous paragraph, consider surjective multiplication map coming from
m0-regularity of F |H

H0(H,F |H(m))⊗H0(H,O(i))→→ H0(H,F |H(m+ i)),

for i ≥ 0. The surjective map H0(H,F (m)) ⊗ H0(Pn,O(i)) →→ H0(H,F |H(m)) ⊗ H0(H,O(i))
composed with the muliplication above factors through

H0(X,F (m+ i))→ H0(H,F |H(m+ i)).

Hence this must be a surjection as well for all i ≥ 0.
So we are left to polynomially estimate h1(X,F (m0)). Since we already established that hi(X,F (m0)) =

0 for i ≥ 2, we have

h1(X,F (m0)) = h0(X,F (m0))− P (F,m0) ≤ r
(
n+m0

m0

)
+ h1(X,Ker(q)(m0))−

n∑
i=0

ai

(
m0

i

)
.
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The latter can be written as a linear polynomial m1(t0, · · · , tn). Since bi’s are polynomial in a′is
we think of mp,n−1(b0, · · · , bn−1) also as a polynomial m0(t0, · · · , tn) in n+ 1 variable. We let

mp,n := m1(t0, · · · , tn) +m0(t0, · · · , tn)

�

More generally, by [HL10, Lem. 1.7.6] given a S-flat family of coherent sheaves F on the S-scheme
X × S with P (Fs, t) = P (t) for some fixed polynomial P , together with a fixed coherent sheaf V
on X and surjections V →→ Fs for all s ∈ S, there exists an integer m0 such that Fs is m0-regular
for all s ∈ S.

A consequence of this result is that given a S-flat coherent sheaf F on PnS , after fixing a surjection

O⊕pPn →→ F , we can find an integer m0 such that Fs is m-regular on Pnκ(s) for all s ∈ S. By

Theorem 4.12 this means f∗F (m0) is locally free (use Grauert’s theorem [Har77, III.12]) of rank
P (m0) and Rif∗F (m0) = 0.

4.4.2. Construction. We now come to representability of the Quot functor QuotX/S(V, P ). The
idea is to see it as subfunctor of some Grassmannian.

Theorem 4.14. The quot functor QuotX/S(V, P ) is representable by a projective S-scheme QuotX/S(V, P ).

Proof.

Step 1. Assume X = Pnk and S = Spec k
For any k-scheme T , let fT : PnT → T denote the pull-back of f : X → Spec k. Given, any

element [ϕ : VT →→ F ] ∈ Quot(V, P )(T ), note that K = ker(ϕ) is also T -flat (Exercise). We know
by Lemma 4.13 that for all m > max{reg(Ft), reg(Vt), reg(Kt)} we have the following short exact
sequence of locally free sheaves

0→ fT∗K(m)→ fT∗VT (m)→ fT∗F (m)→ 0

Indeed, by m-regularity of K we also have R1fT∗K(m) = 0. Furthermore, note that fT∗VT (m) '
OT ⊗k H0(Pnk ,V(m))

Thus for m′ > m the sheaf fT∗F (m′) is determined by the injection

0→ fT∗K(m′)→ OT ⊗k H0(Pnk ,V(m′)). (6)

Since m > reg(Kt) for all t ∈ T , by Theorem 4.12 the multiplication

fT∗K(m)⊗H0(Pnk ,OPn(m′ −m))→ fT∗K(m′)

is surjective. Theorefore fT∗K(m′) for m′ > m is determined by fT∗K(m). Hence the map in
Eq. (6) and hence

⊕
m fT∗F (m) are also completely determined by fT∗ ker(ϕ)(m). Furthermore the

graded module
⊕

m′>m fT∗F (m′) over the graded ring⊕
m′>m

fT∗OPnT (m) ' OT ⊗
⊕
m

H0(X,O(m)) ' OT [x0, · · · , xn]

recovers F as aOPnT -module. Therefore, the surjection ϕ determines an element in ϕm ∈ Gr(r, V )(T ),

where r = P (m) and V = H0(X,V(m)), and is uniquely determined by ϕm. In other words we
have established an injection of functors

Quot(V, P ) ↪→ Gr(r, V ).

In what follows we fix this positive integer m and for the ease of notation we use G in place of
Gr(r, V ).

Recall that on Grassmannian we have the tautological bundle U with

OG ⊗ V →→ U
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such that the fibre of U over a point [V →→ W ] ∈ G is given by W∨. Furthermore, any element
[fT∗ϕ(m) : OT ⊗V →→ fT∗F (m)] ∈ Gr(r, V )(T ) is determined by a map u : T → G and the pull-back
OT ⊗ V →→ u∗U . In other words fT∗F (m) ' u∗U .

Let fG : PnG → G be the pull-back of f . By the previous discussion the surjection OG ⊗
H0(Pnk ,V(m))→→ U determines a graded OPnG-module U as follows: Let

A := Ker(OG ⊗ V →→ U)

and let Ã :=
⊕

m′≥0A · H0(Pnk ,V(m + m′)) be consist of graded pieces given by the image of A,
under the multiplication map

A⊗H0(Pnk ,V(m′))→ H0(Pnk ,V(m+m′)).

Then we define U to be the PnG-module induced by graded module
⊕

m′≥0H
0(Pnk ,V(m+m′))/Ã.

Let GP ⊂ G be a locally closed subset on which U has Hilbert polynomial P . Recall that GP

satisfies the following universal property: Let [ϕ : V →→ F ] ∈ Quot(V, P )(T ) for some scheme T ,
such that F is T -flat and P (Ft) = P . Let u : T → G be the moduli map such that u∗U = fT∗F (m).
Therefore as graded module and hence as OPnT -modules u∗PU ' F where uP : PnT → PnG is the
pullback of u. Since F is flat with fibre-wise Hilbert polynomial P , the universal property of GP

is that u : T → G factors through GP .
We have established that GP representsQoutPnk/k(V, P ) and hence will be denoted by QuotPnk/k

(V, P ).

Via the Plücker emmbedding G ⊂ Pk(∧rV ) we further observe that
QuotPnk/k

(V, P ) is a locally closed subset of the projective space and hence is separated and of finite
type.

For properness we need to check the valuative criterion, i.e. we need to show that given R a dvr
over k with field of fractions K, then the restriction map

QuotPnk/k(V, P )(R)→ QuotPnk/k(V, P )(K)

is bijective. Let [ϕ : VK →→ F ] ∈ QuotPnk/k(V, P )(K). Let j : SpecK → SpecR be the inclusion.

First note that jP∗VK ' VR. Let FR := im(VR → jP∗F ). Since on a dvr flatness is equivalent
to torsion freeness FR is R-flat. Furthermore FR is unique since we know that QuotPnk/k

(V, P ) is

separated.

Step 2. The case X = PnS.

Since V is coherent, there is a surjective map q : O(−a)⊕k →→ V for some integers a and k. Define
the injective map

QuotX/S(V, P ) ↪→ QuotX/S(O(−a)⊕k, P )

by sending [ϕ : VT →→ F ] 7→ ϕ ◦ q. The functor on the right hand side is represented by S ×
QuotPnk/k

(O(−a)⊕k, P ).

For the ease of notation, let Q := S × QuotPnk/k
(O(−a)⊕k, P ). Note that OPnT (−a)⊕m →→ F

factors through VT if and only if the composition ker(q)→ F is zero. Applying this to T = Q, we
obtain a closed subscheme ι : Q′ ⊂ Q such that any element [ϕ : VT →→ F ] determines a morphism
u : T → Q such that u factors through the inclusion ι. Hence Q′ ' QuotX/S(V, P ) represents

QuotX/S(V, P ). This is true more generally, see Exercise 13.

Step 3. The general case.

Since f : X → S is projective, there is a closed immersion ι : X ↪→ PnS compatible with the maps
to S. We replace X by PnS by replacing V by ι∗V. �

Exercise 13. Let φ : E → G be a surjective homomorphism of coherent sheaves on X. The corre-
sponding natural transformation QuotX/S(G,P ) → QuotX/S(E,P ) induced a closed embedding.

(See [FGI+05, Nitsure, Lemma 5.17(ii)])
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4.5. Applications.

4.5.1. Other representability. Quot schemes are used to show representability of an array of other
moduli problems. The Hilbert functor is one of the most well-known amongst them.

HilbPnk : (Sch/k)op → Sets

defined by T 7→ {Y ⊂ PnT |Y is flat over T}. Note that this functor is isomorphic toQuotPnk/k(OPnk , P )
where P is the Hilbert polynomial of Y .

Needless to say Grassmannian is also a special case of the Quot scheme; namely when X = S.
Here flatness is equivalent to locally freeness.

4.5.2. Openness of various properties of sheaves. These will be discussed once we have discussed
the notion of Gieseker stability. For now we state the result

Theorem 4.15 ([HL10, Prop. 2.3.1]). The following properties of coherent sheaves are open in flat
families: simple, of pure dimension, semistable, geometrically stable.

4.5.3. HN-filtration in family.

Theorem 4.16. Let f : X → S be a projective morphism of k-schemes of finite type. Let F be an
S-flat coherent sheaf on X. Then there is an open subset U ⊂ S, such that the graded pieces of the
Harder–Narasimhan filtration of F are U -flat.

The proof uses the openness of stability. The result is in fact much stronger. We will come back
to it later.

5. Semistable sheaves

From now on let X be a connected projective scheme over an algebraically closed field k.

Definition 5.1. Pure coherent sheaves are the ones whose all non-trivial coherent subsheaf F ⊆ E
has support of the same dimension d as that of E. Support is defined by the closed set Supp(E) =
{x ∈ X|Ex 6= 0}. We say the coherent sheaf E is pure of dimension d.

The Euler characteristic of a coherent sheaf E is given by χ(E) :=
∑

i(−)ihi(X,E) where hi =
dimH i. Recall that P (E, t) with respect to the polarisation OX(1) is given by the numerical
polyomial that satisfies

P (E,m) = χ(E ⊗OX(m)) =
d∑

k=0

αi(E)
mk

k!

for m � 0. The degree of the Hilbert polynomial is the dimension of the support of E we denote
this by d14. Furthermore αd(E) > 0 whenever E 6= 0.

Example 5.2. Let X ↪→ Pn be a projective variety with polarisation OX(1) and degree d. Then
P (OX ,m) = dm

n

n! +O(mn−1) where n = dimX.

The reduced Hilbert polynomial of E is defined by p(E, t) := P (E,t)
αd

.

Definition 5.3 ((semi-)stability). A pure coherent sheaf E of dimension d is said to be (semi-
)stable if for any proper subsheaf (equivalently, any quotient E →→ G with G pure of dimension
d) F ⊂ E one has p(F, t) (resp. ≤) < p(E, t) (equivalently, p(E, t) (resp. ≤) < p(G, t)) in the
lexicographic order of coefficients.

14not to be confused with degree
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Remark 5.4. Moritz asked whether in the definition we could get away with locally free subsheaves
instead of coherent subsheaves. If E is not locally free itself this simplification may be problematic.
For instance, let p ∈ A be a closed point in an abelian surface A and let E = L−2⊕mp where L is an

ample line bundle on A and mp is the defining ideal of the point p. Then p(E, t) = (t−2)2+t2

2 − 1 =

t2 − t+ 1. Therefore mp destabilises it and L−2 does not.
That said, it is a fairly common occurrence if E is locally free itself. Take, for example, curves.

However, it is worth considering if this simplification could be imposed whenver E itself is locally
free. Let F ⊂ E. Since F is torsion free it injects into its reflexive Hull, i.e. F ↪→ F∨∨ and the
quotient is supported on a subset of codimension ≥ 2. Thus p(F, t) ≤ p(F∨∨, t). Furthermore,
F∨∨ ⊂ E. Hence we may assume F is reflexive itself. Therefore on surfaces F is locally free15. In
higher dimension we can therefore always assume F is reflexive.

*Find an example of a locally free sheaf that is destabilised by a reflexive coherent sub-sheaf and
not by any locally free subsheaf.

Exercise 14. Show that the “equivalently” part of the definition is actually an equivalent definition.

5.0.1. Properties.

Exercise 15. Show that if f : F → G is a non-trivial morphism of pure semi-stable sheaves then
p(F ) ≤ p(G). In the case of equality, additionally we have f is injective if F is stable and surjective
if G is stable. Thus is F = G, f = 0 or an isomorphism.

The next result concerns automorphisms of stable sheaves. In moduli problem automorphisms
of object is another obstacle in the path of obtaining a nice moduli space.

Theorem 5.5. Let E be a stable sheaf. Then End(E) is a finite dimensional associative algebra
over k. In particular, if k is algebraically closed, End(E) ' k, in other words E is simple.

Proof. The first part follows from noting that End(E) = Iso(E). Let ϕ ∈ End(E) such that it is
not multiplication by an element in k. Since ϕ is of finite dimension, i.e. ϕ` = id for some ` ∈ Z>0,
the algebra k[ϕ] is a finite extension of k. Hence End(E) = k when k = k. �

5.1. Stability on K3 surfaces.

Definition 5.6. A simply connected (i.e π1(S) = 0) compact complex manifold of dimension 2
with trivial canonical bundle (⇒ ωS ' OS) are called K3 surfaces.

Note that only surfaces with trivial canonical bundle are K3 surfaces or abelian surfaces. The

latter are not simply connected. By the Riemann–Roch for surfaces χ(L) = (−KS+c1L)·c1(L)
2 +

χ(OX) = c1(L)2

2 + 2. In general for any coherent sheaf E we have χ(E) =
∫
X ch(E) · td(X).

For a coherent sheaf E of rank r and Chern classes c1, c2 on a smooth K3 surface S with
polarisation H = c1(OS(1)) is given by

P (E,m) = =
rH2

2
m2 + (c1(E) ·H)m+ 2 rk(E) +

(c1(E)2 − 2c2(E))

2

The reduced Hilbert polynomial p(E,m) is given by

p(E,m) = m2 +
2(c1(E) ·H)

rH2
m+ α0(E). (7)

The semistability condition thus in this case translates to the following

15this fact will feature in an exercise later on.
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Definition 5.7 (Stability on K3 surfaces). A torsion free coherent sheaf E is Gieseker stable with
respect to a polarisation H if for all coherent subsheaf F ( E

2(c1(F ) ·H)

rk(F )H2
<

2(c1(E) ·H)

rk(E)H2

or,

2(c1(F ) ·H)

rk(F )H2
=

2(c1(E) ·H)

rk(E)H2
and α0(F ) < α0(E)

A torsion free coherent sheaf E is said to be µ-stable with respect to a polarisation H if for all
torsion free coherent subsheaf F ( E with rkF < rkE we have

(c1(F ) ·H)

rk(F )
<

(c1(E) ·H)

rk(E)
.

Thus on surfaces for any torsion free we have µ-stable ⇒ Gieseker stable, where the slope is

given by µ(E) := (c1(E)·H)
rk(E) . Similarly Gieseker semistable sheaf is µ-semistable.

5.2. Examples.

Example 5.8. (1) Skyscrapper sheaf F at a closed point s is always semistable. Indeed, P (F,m) =
const. and thus p(F,m) = 1.

(2) Let E be a sheaf supported along a curve C ∈ |H|. Since stability of E is the same as that
of E|C which is the same as µ-stability of E|C .

(3) The cotangent bundle ΩS of a K3 surface is stable with respect to any polarisation and for
a very general non-hyperelliptic curve C ∈ |H|, ΩS |C is stable.

(4) ΩPn is stable.
(5) for an abelian variety A of dimension n, ΩA is not stable since ΩA ' O⊕nA . Then OA

destabilises ΩA. Indeed, p(OA, t) = tn = p(ΩA, t). It is however polystable, i.e. direct sum
of semistable sheaves of the same reduced Hilbert polynomial.

5.3. HN and JH filtration. As we have seen in the case of curves stability gives rise to two
very useful filtrations; namely the Harder–Narasimhan filtration by semi-stable quotients and the
Jordan–Hölder-filtration for semistable sheaves by stable quotients. The latter induces a notion of
S-equivalence given by isomorphism of the direct sum of the graded pieces. Our moduli functor
will not distinguish sheaves that are S-equivalent to each other.

5.3.1. Harder–Narasimhan filtration.

Definition 5.9. Let E be a pure sheaf of dimension don X. A Harder-Narasimhan (HN) filtration
for length ` for E is an increasing filtration by pure subsheaves of dimension d

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ E` = E

such that griE := Ei/Ei−1 is a semistable sheaf of dimension d and with reduced Hilbert polynomial
pi satisfying

pmax(E) := p1 > · · · p` =: pmin(E)

in the lexicographic order of coefficients.

Needless to say, if E is semistable the filtration is of length 0 and pmax(E) = pmin(E). Two
concerns that should be addressed immediately; existence and uniqueness. We do that next.

Theorem 5.10. Every pure sheaf E has a unique Harder-Narasimhan filtration.



24 YAJNASENI DUTTA

Proof. For any subsheaves F1, F2 ⊂ E define F1 ≤ F2 if F1 ⊂ F2 and p(F1) ≤ p(F2). Note that any
chain of ≤ will have a maximal element. We let E1 to be the maximal with respect to ≤ that also
has the minimal αd(E1) amongst all such ≤-maximal sheaves. Suppose G ⊂ E be a sheaf such that
G 6= E1 and p(G) > p(E1). We will show that such G cannot exist. If G ⊂ E1 we replace G by the
maximal subsheaf of E1 which has reduced Hilbert polynomial larger than p(E1). Let G′ be the ≤-
maximal element of the chain of inclusion that contains G. Then we obtain, p(G′) > p(G) > p(E1).
Recall that if G′ ⊂ E1, the Hilbert polynomial, since it is defined in terms of global sections it
always satisfies P (G′,m) ≤ P (E1,m). Thus in order for p(G′) > p(E1), we need αd(G

′) < αd(E1).
This contradicts the minimiality of αd(E1). Thus G′ 6⊂ E1. In this case, E1 ⊂ E1 + G′. By the
maximality of E1, we obtain p(E1) ≥ p(E1 +G′). Now consider the short exact sequence

0→ E1 ∩G′ → E1 ⊕G′ → E1 +G′ → 0

For Hilbert polynomials and the leading terms one has

αd(E1)p(E1) + αd(G
′)p(G′) = αd(E1 ∩G′)p(E1 ∩G′) + αd(E1 +G′)p(E1 +G′) (8)

and
αd(E1) + αd(G

′) = αd(E1 ∩G′) + αd(E1 +G′)

Replacing αd(E1) by αd(E1 ∩G′) + αd(E1 +G′)− αd(G′) in Equation 8 we obtain

αd(E1∩G′)(p(G′)−p(E1∩G′)) = (αd(G′)−αd(E1∩G′))(p(E1)−p(G′))+αd(E1+G′)(p(E1+G′)−p(E1)). (9)

Since p(E1) > p(E1 +G′) it must be the case that αd(G
′)−αd(E1∩G′) = αd(E1 +G′)−αd(E1) > 0.

Thus, the right hand side of Equation 9 must be less than 0. Hence we obtain p(G) < p(G′) <
p(E1∩G′). This is a contradiction since E1∩G′ ⊂ E1 and E1 was ≤-maximal for its chain. But this
contradicts maximality of G in E1 since E1 ∩ G′ ⊂ E1 and has reduce Hilbert polynomial bigger
than G.

Now if G 6⊂ E1 to begin with, then E1 ⊂ E1 +G. By the similar argument as before we obtain
p(G) < p(E1 ∩ G). Replacing G by E1 ∩ G we may assume that G ⊂ E1. Thus we may assume
G ⊂ E1 and proceed as above.

Note that since for any G ⊂ E1 we have p(G) ≤ p(E1), we have also shown that E1 is semistable.
This constitutes the first step in constructing the HN filtration of E. In order to construct the next
step we proceed inductively on E/E1. Let

0 ⊂ G1 ⊂ · · · ⊂ G`−1 = E/E1

be a HN filtration of E/E1. Then Ei = E1 + Gi gives a filtration of E with quotients Ei/Ei−1 '
Gi/Gi−1.

For the uniqueness, let {E′i} be different HN filtration of E such that E1 6= E′1. Since p(E1) ≥
p(E′1) and E′1 is semistable, either E1 ⊂ E′1 and p(E1) = p(E′1) or p(E1) > p(E′1) and thus E1 6⊂ E′1.
The former threatens the ≤-maximality of E1, since it implies E′1 > E1. For the latter, let E1 ⊂ E′j
for some j. Now consider the composition E1 → E′j → E′j/E

′
j−1. Since both E1 and E′j/E

′
j−1 are

semistable and the composition gives a non-trivial homomorphism, we conclude from Exercise 15
p(E′1) < p(E1) ≤ p(E′j/E

′
j−1). But since {E′i} constitutes a HN filtration it must be the case that

p(E′1) ≥ p(E′j/E′j−1). �

A simple example of Harder–Narasimhan filtration is splitting of any vector bundle on P1 as
direct sum of line bundles.

5.3.2. Jordan–Hölder filtration and S-equivalence.

Definition 5.11. Let E be a semistable sheaf of dimension d on X. A Jordan-Hlder filtration of
E is a filtration by subsheaves

0 = E0 ⊂ E1 ⊂ · · · ⊂ E` = E

such that the graded pieces gri(E) := Ei/Ei−1 are stable with reduced Hilbert polynomial p(E).
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We have already seen in case of curves that Jordan–Hölder filtration is not unique. But we have

Theorem 5.12. JH-filtration exists and the graded module gr(E) := ⊕igri(E) is unique.

Proof. The category of semistable sheaves of a fixed reduced Hilbert polynomial is abelian. First
note that when f : E → F is an injective morphism of semistable sheaves with p(E) = p(F ),
the quotient F/G if non-zero must be pure. This is because if dim(Supp(F/G)) < d, the leading
terms in the Hilbert polynomial of E and F are equal, i.e. αd(E) = αd(F ). But since F ( G,
P (F ) < P (G). Therefore the condition p(E) = p(F ) cannot be satisfied.

Note, let I = im(f). Since any quotient of I is a quotient of E and p(I) ≤ p(F ) = p(E), we
obtain that I is also semistable. Now since E is semistable p(E) ≤ p(I) hence it must be that
p(E) = p(I). A similar analysis reveals that the kernel must also be semistable with the same
reduced Hilbert polynomial.

Now let E′ ⊂ E such that p(E′) = p(E). Note that E′ must be semistable. If it is not stable,
there must E′′ ⊂ E′ such that p(E′) = p(E′′). This descending chain of pure sheaves with pure
quotients must terminate. Indeed, generically the rank of such a chain must decrease. Hence we
have found E1 ⊂ E such that E1 is stable. We do the same with the quotient E/E1 which is
semistable from the above discussion. Continuing this way we end up with a finite chain. 16

We show the uniqueness by induction on the leading coefficient of E. Let {Ei} and {E′i} be two
JH-filtrations. Say j is the smallest such that E1 ⊂ E′j →→ E′j/E

′
j−1. Since both E1 and E′j/E

′
j−1

are stable, the non-trivial composition must be an isomorphism. Therefore, E′j ' E1 ⊕ E′j−1. We
have the following ses

0→ E′j−1 → E/E1 → E/E′j → 0

Hence, Along with {Ei/E1} we can also define F ′i := E′i for i < j and F ′i := E′i/E
′
j for i > j. Both

are JH-filtration for F .
Note that E/E1 is semistable with p(E) = p(E). Since P (E) > P (F ) it must be the case that

αd(F ) < αd(E). Hence, by induction we are done. �

Example 5.13. Any extension of line bundles of the same reduced Hilbert polynomial p, extends to
a semistable bundle of Hilbert polynomial p.

Finally, we show that semistability is open in flat families.

Theorem 5.14. Let f : X → S be a projective morphism of noetherian schemes such that F is an
S-flat coherent sheaf on X. If Fs0 is semistable for some s0 ∈ S, there exists an open neghbourhood
U of s0 such that for all s ∈ U , Fs is semistable.

Sketch. The idea is to argue that the set where Fs is not semistable is closed in S. Since it uses
notions that we have not introduced we only sketch the proof.

Consider such an Fs. By the quotient definition of semistability there exists a coherent sheaf
G with Fs →→ G and p(Fs) > p(G). Now consider the set A := {P |P = P (G) for such a G}.
Assume that A is finite, then the point s lies in the union of the image of the projective map
QuotX/S(F, P ) → S for P ∈ A, which is a closed subscheme of S. Indeed, the projection [Fs →→
G] ∈ QuotX/S(F, P )(k) = QuotX/S(F, P )(k).

Showing the set A is finite requires a boundedness result due to Groethendieck (see e.g. [HL10,
Lem. 1.7.9]). �

Definition 5.15 (S-equivalence). Two semistable coherent sheaves E1 and E2 are said to be S-
equivalent if gr(E1) ' gr(E2).

In the moduli space that will be dealt with next S-equivalent semistable sheaves get identified.

16For the category theory minded people, note that all this is saying is that the category of semistable sheaves
with a fixed reduced Hilbert polynomial is artinian and noetherian. This is why composition series or Jordan–Hölder
series exists.
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6. Moduli space of semistable sheaves

6.1. The set-up. Fix a polynomial P ∈ Q[t] and define

MP : (Sch/k)op → Sets

by sending

S 7→ {F ∈ Coh(X × S)|P (Fs) = P and Fs is semistable for all s ∈ S}/ ∼ .
Here F ∼ F ′ if for p : X × S → S, we have F ' F ′ ⊗ p∗L for some line bundle L on S.

Recall that the notion of semistability was introduced in order to get a bounded moduli (see
Example ??).

Remark 6.1. For a moment lets ignore the twisting by the line bundle and consider the functor
M′P : (Sch/k)op → Sets

S 7→ {F ∈ Coh(X × S)|P (Fs) = P and Fs is semistable for all s ∈ S}/ ∼ .
Here F ∼ F ′ if F ' F .

From the point of view of corepresentability it does not change anything. By this we mean a
scheme M corepresents M if and only if it corepresents M′ 17 Indeed, M'M′/ ∼ where F ∼ F ′
if for p : X × S → S, we have F ' F ′ ⊗ p∗L for some line bundle L on S.

Max gave the following nice argument: if M corepresents M′, for any T ∈ Sch and elements
F, F ⊗ p∗L ∈ M′(T ) we obtain maps ϕ,ϕL : T → M . We want to show that these two maps
coincide. Consider a trivialisation of L given by open sets {Ti} covering T . On each of these open
sets we have F |Ti ' F ′|Ti , which induce maps ϕi : Ti → M . Since M′ → hM is functorial, we
obtain ϕi = ϕ|Ti = ϕL|Ti . Hence ϕ = ϕL.

Theorem 6.2. In the presence of non-isomorphic S-equivalent points, M does not admit a coarse
moduli space.

Proof. We have seen this before for curves. Formally, let F be a non-trivial extension of two semi-
stable sheaves F ′ and F ′′, then consider the trivial family F ' OA1 ⊗ F on A1 × X given by

F|Xt ' F for all t ∈ A1 or consider the family given by the A1-flat sheaf [Lan83] F̃ induced by

the affine line passing through the class [F ] ∈ Ext1(F ′, F ′′). In the latter case we have F̃t ' F but

F̃0 ' F ′ ⊕ F ′′.
Let M be a separated scheme that represents MP as a coarse moduli. The map MP (A1) →

Hom(A1,M) would have sent F and F̃ to the same point. Indeed, the map MP → hM should be
functorial with the inclusion A1\{0} ↪→ A1 and the elements in the hM (A1\{0}) sends F|A1\{0} and

F̃ |A1\{0} to the same point m ∈M . These two maps must extended A1 would still map everything
to m ∈M .

Now consider the closed immersion Spec k = {0} ↪→ A1. If M representedM as a coarse moduli,
M(Spec k) = Hom(Spec k,M). But in this case we see that F and F ′⊕F ′′ map to the same point
in hM (Spec k). Hence M cannot be a coarse moduli. �

The goal of the next few lectures would be show that

Theorem 6.3. There exists a projective scheme M universally corepresenting M.

Here is a brief outline of how we will construct M .

Step 1. The set of semistable sheaves with a fixed Hilbert polynomial on X is bounded, i.e. there
exists a scheme of finite type S and a sheaf F on X × S such that for any semistable sheaf F on
X, there exists s ∈ S such that Fs ' F .

17we drop P when it is clear from the context.
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Step 2. Hence there exists a uniform m such that any semistable sheaf on X of Hilbert polynomial
P is m-regular. Therefore, P (m) = h0(X,F (m)) and F (m) is globally generated, i.e. [H := OX ⊗
H0(X,F (m))(−m) →→ F ] ∈ QuotX/k(H, P ). The locus R ⊂ QuotX/k(H, P ) of semistable sheaves

F on X such that h0(X,F (m)) = P (m) is open. This is by Theorem 5.14.

Step 3. Use notation V := k⊕P (m) and Q := QuotX/k(H, P (m)). The linear group scheme GL(V )
acts on R by simply changing the basis of V . Since the isomorphism class of semistable sheaf will
ignore this it makes sense to consider the quotient R(k)/GL(V )(k). In this step when this quotient
is a ”nice” scheme, this scheme universally corepresents M′. See Lemma 6.10.

Step 4. Now we identify the semistable points for GIT with Gieseker semistable sheaves. The idea
is to interpret both of them numerically. To this end, we need the Hilbert–Mumford criterion for GIT
semistability (see ??) and Le-Potier’s equivalent numerical interpretation of Gieseker semistability
(see ??).

Step 5. Employ results from geometric invariant theory (GIT) to construct the GIT-quotient.

This is the plan: We will not prove Step 1 but extensively use it. We have already seen Step 2.
Before going into the main crux of the construction, namely Step 3 and Step 4, we start with a
short discussion on general ideas from GIT and the Hilbert–Mumford criterion. Finally, while im-
plementing Step 4 we will focus more on how to employ this criterion to interpret GIT-semistability
numerically. We will state and use in Step 5, the criterion of Le-Potier, however we will not see a
proof. For a complete treatment of the steps above consult [HL10, §3,4].

6.2. Geometric Invariant Theory. My favourite reference for this part in Mukai’s book [Muk03].
The more classical references are [MFK94, New78].

GIT concerns with understanding the orbit space of group actions. However, unlike actions of
discrete sets, we would like to give a continuous topology on the orbit space. Turns out it is too
much to hope for. Here’s an example, consider the action of the multiplicative affine group scheme
Gm := SpecC[t, t−1] on the affine plane A2

C given by

t 7→ [(x, y) 7→ (tx, t−1y)].

The following are the orbits of this action

• The origin (0, 0).
• The curves (xy = c) for c ∈ C.
• The x-axis\{(0, 0)}.
• The y-axis\{(0, 0)}.

It is not difficult to see immediately that no topological space Y with a continuous map A2 → Y
can be the orbit space. Indeed, the origin lies on the limits of the last two orbits and therefore we
should not be able to distinguish them in Y .

One can immediately propose the following work-around for this setback; just don’t distinguish
the orbits if they share points in the limits. This idea is indeed useful and we will need to refer to
it a lot.

Definition 6.4 (Closure equivalent orbits). Two orbits O and O′ are said to be closure equivalent
if O ∩O′ 6= ∅.

With this definition, we let Y = SpecC[xy] ' A1. In general, let X = SpecR be any affine
algebraic variety, and G is a linearly reductive group (e.g. Gm GLn, SLn etc.) RG is a finitely
generated and X/G = SpecRG.

Direct projectivisation of this construction does not quite work as expected. Consider the action
of Gm on A2 by (x, y) 7→ (tx, ty). The orbits are lines passing through the origin minus the origin
and the origin itself. Thus from the logic above the quotient should be Spec k. This is a bit strange,



28 YAJNASENI DUTTA

since we should expect that quotienting a 2-dimensional variety by a one dimensional group scheme
should give us something one dimensional. In this situation the optimal way to take quotient would
be to ignore the origin and consider the closure equivalent orbits in the complement. On one hand,
the orbits are already closed in A2 \ {(0, 0)}, on the other hand A2 \ {(0, 0)} is not affine anymore.
The induced action of Gm, on k[x] and k[y] glue outside (0, 0) and the quotient is P1. This is infact
a protoype example that we will keep in mind.

More generally, the action of Gm on X = SpecR always splits R = ⊕RGi such that v 7→ tiv
for v ∈ RGi ⊂ R under this action. Thus SpecR0 is the fixed part and Proj⊕RGi is the projective
quotient which is denoted by X �Gm. The set Xss := X \Z((⊕m>0R

G
m) ·R) is said to be the set of

semistable points. Recall that the zero set defined by the irrelevant ideal (⊕m>0R
G
m) · R is in this

case precisely SpecR0.
Even more generally given a projective scheme X and an action of a reductive group G (e.g.

GLn) on it, the goal is to find a G-linearised ample line bundle on it. The linearisation induces an
action of G on PN where L embeds X ↪→ PN . This induces further actions on AN+1 and on the
subvariety given by the affine cone ConeL(X) := SpecR = Spec⊕H0(X,L⊗n). This affine action
look very similar to our prototype example above, which roughly the so-called “ray type” action.
The projective quotient is then given by ProjRG and is considered to be the GIT quotient of X.
To make things more precise we recall

Definition 6.5 (G-linearised line bundle). Let G be an algebraic k-group scheme acting on a finite
type k-scheme X. Let σ : X ×G→ X be the group action. A G-linearisation of a line bundle L is
an isomorphism

Φ: σ∗L→ p∗XL,

where pX : X × G → X is the projection, together with the following cocycle condition that the
isomorphism Φ restricted to the point (x, gh) is compatible with (x, g) and (xg, h) in the sense that
Φx,g ◦ Φxg,h : Lxgh → Lx is the same as Φx,gh.

Globally using the multiplication map m : G × G → G and the first two coordinate projection
p12 : X ×G×G→ X ×G, this translates to

(idX ×σ)∗Φ = p∗12(σ × idG)∗Φ

Given a G-linear ample line bundle L on a projective scheme X, we let R =
⊕

nH
0(X,L⊗n).

From our discussion before, the locus that we should ignore is the zero of the irrelevant ideal
(
⊕

m>0R
G
m) · R ⊂ R where RGm consists of the sections s ∈ R such that under the action of t,

s 7→ tms as before. Paraphrasing, we have the following definition

Definition 6.6 (GIT (semi)stability). A point x ∈ X is called semistable with respect to a G-
linearized ample line bundle L if there is an invariant global section s ∈ H0(X,L⊗n) for some n,
with s(x) 6= 0. We denote this locus by Xss(L).

Furthermore, x ∈ Xss(L) is said to be stable if in addition the stabilizer Gx is finite and the
G-orbit of x is closed in the open set Xss(L) of all semistable points in X.

Altogether, we have the following theorem

Theorem 6.7. Let G be a reductive group. Given a G-linear ample line bundle L on a projective
scheme X, there is a projective scheme Y and a morphism p : Xss(L)→ Y such that Y is “accept-
able” as a quotient in the sense that p satisfies the following Y universally corepresents the functor
Xss(L)/G : (Sch/k)op → Sets by sending S 7→ Xss(L)(S)/G(S).

Furthermore, p is surjective, open, affine, G-equivariant for the trivial action of G on Y , i.e.
closure equivalent orbits in Xss(L) maps to the same point in Y . Also, for every affine open
U = SpecS ⊂ Y such that p−1(U) = SpecR, then p induces an isomorphism of S ' RG, and if
W and W ′ are two disjoint closed invariant closed subset in X, then p(W ) ∩ p(W ′) = ∅. In other
words, p is a universal good quotient for the G-action on X.
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Moreover, there is an open subset Y s ⊆ Y such that the GIT-stable points Xs(L) = p−1(Y s)
and such that p : Xs(L) → Y s satisfies furthermore that the geometric fibres of p are the orbits
of geometric points of X. This also works similarly under base change; said differently p|Xs is a
universal geometric quotient. Note that in this case Y s is a true orbit space.

Finally, there is a positive integer m and a very ample line bundle M on Y such that L⊗m|Xss(L) '
p∗(M).

We denote Y by X �L G.
The Definition 6.6 is not convenient to work with, especially for deciding whether a point is
semistable or not. Besides, we need a criterion for general reductive groups, most important
for us is GLn. The set-up in the general case is reduced to Gm via one-parameter subgroup
given by any non-trivial group homomorphism λ : Gm → G. The action σ : G ×X → X, induces
σλ(t, x) 7→ σ(λ(t), x) which in turn extends to give a map

σ̃λ : A1 ×X → X

where σ̃λ(0, x) = lim
t→0

σλ(t, x) ∈ X. The Hilbert–Mumford criterion roughly speaking says that x is

semistable if and only if for all such λ this limit either does not exist or if it does it does not lie in
the zero set of the irrelevant ideal. In order to translate this to the G-linearised line bundle L we
need a few more notation.

Lets denote this limit point by 0x,λ ∈ X. Note that σ(g,0λ) = 0λ for all g ∈ λ(Gm). In particular
for any v ∈ L⊗ κ(0x,λ), v 7→ trv under the action of Gm. We denote this power of t by µL(x, λ).

Theorem 6.8 (Hilbert–Mumford, [HL10, Thm. 4.2.11]). A point x ∈ Xss(L) if and only if for all
non-trivial one-parameter subgroups λ : Gm → G, one has

µL(x, λ) ≥ 0.

Furthermore x ∈ Xs(L) if and only if the strict inequality holds for all non-trivial λ.

One final result from this general theory that we need is called Luna’s étale slice theorem [HL10,
Thm. 4.2.12]. This result shows that the local structure of a GIT quotient is again a GIT quotient.
This will later on help us understand local structure of Xs(L) in our particular situation of moduli
of semistable sheaves.

Theorem 6.9. Let G and X be as before. Let p : X → X �G be a good quotient (e.g. X is affine).
Let x ∈ X be a point with a closed G-orbit and therefore reductive stabilizer Gx . Then there is a
Gx-invariant locally closed subscheme S ⊂ X through x such that the map S ×Gx G → X is étale
and induces an tale morphism S �Gx → X �G, and the diagram

S ×Gx G X

S �Gx X �G

is Cartesian.

6.3. The construction. We first connect the functor R/GL(V ) with M′. This requires no GIT.
With notations from the previous section we have

Lemma 6.10. If R → M is a categorical quotient for with M a scheme of finite type, then M
corepresents M′.

Conversely, if M corepresents M′ there exists a quotient map R → M which is a categorical
quotient.



30 YAJNASENI DUTTA

Proof Sketch. Let S be a Noetherian k-scheme. The idea is to produce maps M′ → R/GLr and
also in the other direction. The other direction is rather easy. Note that there is a map from R→ S.
Indeed, since R was chosen to parametrise semistable quotients ofH, the universal quotient restricts
to R to give an universal quotient H⊗OR →→ U such that for any map S → R we obtain a quotient
H →→ F on X × S with Fs semistable for all s ∈ S. On X × S the GL(V )-action does not change
the quotient F and hence we have a map from R/GL(V ).

For the converse, let OX(1) be the polarisation of X, and let F be a flat family of sheaves
with fibrewise Hilbert polynomial P . By Lemma 4.13 we can choose an integer m such that Fs is
m-regular for all s ∈ S and p∗F(m) is locally free of rank r = P (m).

Let R(p∗F(m)) denote the frame bundle for p∗F(m). In other words, let R(p∗F(m)) be the open
affine in SpecS•(Hom(O⊕rS , p∗F(m))) defined by the isomorphisms. The map π : R(p∗F(m))→ S
with fibre over s ∈ S given by the set of isomorphisms κ(s)⊕r ' p∗F(m)⊗κ(s). It is known that π
is a categorical quotient under the action of GLr on R(p∗F(m)). In fact more is true, it is known
that R(p∗F(m)) is a principle GLr bundle, this means they are in particular Zariski locally trivial
with fibres isomorphic to GLr.

On R(p∗F(m)) there is a natural element of QuotX/k(H, P ). Indeed, π∗(p∗F (m)) is a trivial

bundle on R(p∗F(m)), in other words we have an isomorphism O⊕rR(F ) → π∗(p∗F (m)). Since π

is flat, letting πX : R(F ) ×S X → X be the projection we have by flat base change we have
π∗(p∗F (m)) = p∗π

∗
XF (m) and hence the surjection

OR(F ) ⊗H →→ π∗XF

on X × R(F ). This induces an element a map ρ : R(F )→ QuotX/k(H, P ).

Note that if Fs is in addition semistable, image ρ(R(F )) ⊂ R. Furthermore ρ is equivariant with
respect to the action of GLr. This gives a map

M′(S)→ R(S)/GLr(S)

�

6.4. GLr-linearised bundle. In order to construct R/GLr we let R ⊂ QuotX/k(H, P ) to be the

closure of R in the Quot scheme and apply GIT on R. The GIT-semistable points with respect to
the forthcoming very ample line bundle are precisely R. Thus GIT-ss recovers the usual semistable

locus in the Quot scheme, in other words we will argue below R
GIT- ss

= R. As a consequence we
obtain a projective scheme M that is a categorical qoutient of R under the GLr action and hence
by Lemma 6.10 corepresents M′.

Let f : X → Spec k be the structure map. The GLr-linearised line bundle is constructed as
follows: Recall that for any coherent sheaf H, ι : Quot(H, P ) ↪→ Grk(f∗H(`), P (`)) is a closed

immersion for ` � 0. Furthermore Grk(f∗H(`), P (`)) ↪→ P(
∧P (`) f∗H(`)) is determined by the

ample line bundle detU where U is the universal quotient bundle on Gr. Let ρ : H →→ U be the
universal quotient on the Quot scheme. Then from the construction of ι, we obtain ι∗ detU '
det f∗U(`). One can then argue that L` := det f∗U(`) is GLr-linearised (see [HL10, p. 101] for
details).

6.5. GIT-(semi)stability vs. Gieseker (semi)stability. The following theorem of Le Potier
translates Gieseker (semi)stability to a numerical criterion.

Theorem 6.11. Let p(t) be a polynomial of degree d and let α ∈ Z>0. Then a coherent sheaf F
with Hilbert polynomial αp(t) is (semi)stable if and only if h0(X,F (m)) ≥ αp(m) and any coherent
subsheaf F ′ ⊂ F with 0 < α′ < α as the leading coefficient in its Hilbert polynomial satisfies

α′p(m)(≥) > h0(X,F ′(m)) for m� 0. (10)

Furthermore if α′p(m) = h0(X,F ′(m)) F ′ destabilises F , i.e. p(F ′) > p(F ).
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For a proof see [HL10], but lets do a quick sanity check. For m � 0 we have α′p(m) ≥
h0(X,F ′(m)) = α′p′(m), which implies p(m) ≥ p′(m), this is in the right direction for semistability.

We will now convert Hilbert–Mumford criterion into a numerical criterion. For this let [ρ : H�
F ] ∈ R such that GLr acts on it. Recall that H ' OX(−m)⊗ V , V = k⊕r.

Let λ : Gm → GLr be a one-parameter subgroup. We want to find its limit. Let V =
⊕

m Vm be
the decomposition under the action of Gm, i.e. letting Gm = Spec k[t, t−1], t · v 7→ tmv if v ∈ Vm.
We let

F≤k := ρ(
⊕
m≤k

Vm).

Let Fk := F≤k/F≤k−1 and hence ρk : OX(−m)⊗ Vk →→ Fk are surjections for all k. Let

ρ′ :
⊕

Vk ⊗OX(−m)→→
⊕

Fk.

[HL10, Lemma 4.4.3] shows that the A1-flat sheaf given by the extension of OX [t, t−1]-module

F := ⊕kF≤k ⊗ tk

on X×A1 together with a surjection ρ : H⊗k[t]→→ F satisfies ρ|t = ρ◦λ(t) and ρ|0 = ρ′. Therefore

lim
t→0

[ρ] · λ(t) = ρ′ ∈ R

in the GIT-sense. Hence the fibre of the line bundle L` at this limit point acquires an action of Gm.
The weight of this action is calculated in [HL10, Lemma 4.4.4] to be µL([ρ′], λ) = −

∑
n nP (Fn, `).

We have

Lemma 6.12. A point ρ ∈ R is GIT-semistable if and only if µL([ρ], λ) > 0 if and only if dimV ·
P (F≤n, `) ≥ (dimV≤n) · P (F, `) for ` � 0 if and only if for all coherent subsheaf 0 6= F ′ ⊂ F of
dimension d

dimV · P (F ′, `) ≥ (dimV ′) · P (F, `) (11)

where V ′ := H0(X,F ′) and `� 0.

The first equivalence is Hilbert–Mumford criterion, the second is unwrapping the expression∑
n nP (Fn, `) and the third requires some argument which sketched in [HL10, Lemma 4.4.5 and

4.4.6].

Last, but certainly not least, it remains to prove that R
GIT- ss

= R using the numerical criterion
in Eq. (11) and Eq. (10). To this end, let’s start by assuming that F is semistable. Since F
is m-regular, dimV = αd(F )p(m). Then by Eq. (10) we have for any subsheaf F ′ ⊂ F with
0 < αd(F

′) < αd(F ) the following numerical criterion

dimV · αd(F ′) = αd(F )p(m) · αd(F ′) ≥ h0(X,F ′(m)) · αd(F ) = dimV ′ · αd(F ).

The left hand side is the leading coefficient of the polynomial dimV ·P (F ′) and the right hand side
is the leading coefficient of the polynomial dimV ′ · P (F ). Hence in the lexicographic order we get
Eq. (11).

The converse is a similar argument. Furthermore, by carefully distinguishing between the in-

equalities and strict inequalities, we can infer that [ρ : H →→ F ] ∈ RGIT- s ⊂ R if and only if F is
Gieseker stable.

6.6. An example on K3 surface. Recall from Definition 5.7 that on a K3 surface S we have the
following implications

µ-stability ⇒ stability ⇒ semistability ⇒ µ-semistability.

Exercise 16. Show that F is µ-(semi)stable if and only if F∨ is µ-(semi)stable.
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Let S ⊂ P3 be a general quartic surface. Let H = c1(OS(1)). Since ωS ' OS(4 − 3 − 1) = OS ,
S is a K3 surface 18. In this case, the rank of the Picard group rk Pic(S) = 1 and is generated
by H. Consider the Hilbert polynomial P (t) = 4t2 − 4t + 3. Any coherent sheaf E satisying
P (E, t) = P (E) must have the following invariants (see Eq. (7)): rkE = 2, c1(E) = −H and
c2(E) = 3, since H2 = 4 and c1(E) must be a multiple of H. In order to keep track of these
invariants, we rename MS(P ) as MS(2,−H, 3). If the moduli space MS(2,−H, c2) is non-empty
then it is smooth of dimension 4c2 − 10. This fact will be revisited later on.

Furthermore, all notions of stability coincide with respect to these invariants. Indeed, let F be
µ-semistable of rank 2 and c1(F ) = −H. If F is not stable, there exists a rank one torsion free

sheaf K ↪→ F such that c1(K) ·H = c1(F )·H
rkF = −2. But this is impossible since the c1(K) must be

an integral multiple of H and H2 = 4.
Additionally, we need the following facts about chern classes [?] in what follows

• Let 0→ F ′ → F → F ′′ → 0 be a short exact sequence. Then c1(F ) = c1(F ′) + c1(F ′′) and
c2(F ) = c2(F ′) + c1(F )c1(F ′′) + c2(F ′′).
• For any line bundle L, c1(F ⊗ L) = c1(F ) + rk(F )c1(L). c2(F ⊗ L) = c2(F ) + (rk(F ) −

1)c1(F )c1(L) +
(

rk(F )
2

)
c1(L)2.

• Let x ∈ S be a closed point and let mx be its maximal ideal. Then c1(mx(1)) = H and
c2(mx) = 1. Thus c2(κ(x)) = −1.

Then we have the following

Proposition 6.13. MS(2,−H, 3) ' S.

Proof. We know that if M := MS(2,−H, 3) 6= ∅ dimM = 2.
It is enough to check bijection on closed points on S and M . Since both are normal schemes by
We first construct a map S → M , i.e. given x ∈ S, we will construct a µ-stable sheaf Fx on

S such that they are all fibres of an S-flat family of sheaves on S × S. To this end, consider the
evaluation map

H0(S,mx(1))⊗OS
evx−−→ mx(1) (12)

and let Fx := ker(evx). Note that h0(S,mx(1)) = 3 since it is the kernel of the surjective evaluation
map H0(S,OS(1)) →→ κ(x). Note also that evx is surjective everywhere except possibly at x. At
x, the map fits in the following short exact sequence

0→ H0(S,m2
x(1))→ H0(S,mx(1))

evx(x)→ mx/m
2
x → 0.

Indeed, the vanishing of H1(S,m2
x(1)) = 0 follows from the fact that OS(1) is very ample and hence

the evaluation map H0(S,OS(1))→→ OS/m2
x is also surjective.

All in all, we established that the generic rank of Fx is 2 and c1(Fx) = −H. Furthermore Fx
is µ-stable since any rank 1 torsion free coherent sheaf K ↪→ Fx must satisfy c1(K) = −kH for
k ≥ 0. Indeed otherwise there are no non-trivial map K ↪→ Fx ↪→ O⊕3

S . Furthermore k 6= 0 since
in that case K ' IV , ideal sheaf of some 0-dimensional subscheme V ⊂ S. But then K ↪→ F
would factor through K ↪→ OS → F which is impossible since F has no global sections, which can
be seen by taking global section in Eq. (12). Therefore µ(K) < µ(F ) for all 0 6= K ⊂ F . Finally
we argue that Fx is locally free since F∨∨x is also µ-stable with c1(F∨∨) = −H and c2(F∨∨) ≤ 3.
The last inequality can be seen from the fact that F∨∨x /Fx is supported only at points. Therefore
F∨∨ ∈MS(2,−H, c2) 6= ∅. But then 4c2(F∨∨x )− 10 ≥ 0. Hence c2(F∨∨x ) = 3 and Fx ' F∨∨x .

To find a global S-flat sheaf on S × S, lets denote the projections by p, q : S × S → S and
∆ ↪→ S × S the diagonal. Then define F to be the kernel of

p∗(p∗I∆ ⊗ q∗OS(1))→→ I∆ ⊗ q∗OS(1).

It is not difficult to see that is x 6= x′ we have Fx 6' Fx′ and the map S →M is given by x 7→ [Fx].

18argue that S is simply connected using Lefschetz hyperplane theorem for fundamental groups.
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Now for the map in the other direction, let F ∈ M be a µ-stable sheaf. As argued above
we know that F is locally free and H0(S, F ) = 0. Now note that χ(F ) = P (1) = 3. Hence
H2(S, F ) = Hom(F,OS) ≥ 3. Considering 3 linearly independent cosections F → OS , we claim
that there is a short exact sequence

0→ F
ϕ−→ O⊕3

S → mx(1)→ 0.

Assuming the claim note that H0(S,OS)⊕3 ' H0(S,mx(1)) and hence h1(S, F ) = 0. Thus F is
determined by ϕ upto isomorphism.

To see the short exact sequence above, note that if ϕ was not injective, im(ϕ) is a generic rank
1 torsion free sheaf and hence is isomorphic to IV (a) for some dimension 0 subscheme V ⊂ S
and a ∈ Z≤0. The torsion freeness and the condition on the twist a comes from the fact that

im(ϕ) ⊂ O⊕3
S . But then ϕ factors through IV ↪→ OS contradicting linear independence of the

choice of cosections.
A similar argument shows that Q := Coker(ϕ) is torsion free. If not consider the saturation F ′ )

F , i.e. the quotient Q′ := O⊕3
S /F ′ is torsion free. We have OS(−H) = det(F ) ( det(F ′) ⊂

∧2O⊕3
S .

Hence det(F ′) = OS and c1(Q) = 0. Since Q is torsion free and there are no maps from OS → IV
for any ideal sheaf, it must be the case that Q ' OS and F ′ ' O⊕2

S , again contradicting linear
indepence of choice of cosections.

Since c1(Q) = OS(H) and c2(Q) + c2(F )−H2 = 3c2(OS) = 0, i.e. c2(Q) = 1, hence it must be
the case that Q = Ix(1) for some point x ∈ S. �

Exercise 17. On a K3 surface defined by a smooth quartic, show that h0(S,OS(1)) = 4.

Exercise 18. Let F be a reflexive coherent sheaf on a smooth surface S then F is locally free.

Hint: F is projective if and only if F is locally free (Check locally). To check projectivity use
the definition of projective dimension in terms of Ext-groups.

6.7. Local structure and smoothness criterion. GIT construction usually results in normal
singularities. However from the point of view of birational geometry and minimal model program
they are not terrible; namely the moduli spaces have the so called kawamata log terminal singular-
ities ([BGLM21, Corollary 2]). In this section we will study the local structure in order to find out
when they are actually smooth, with a view toward applying the theory to the case of K3 surfaces.

For this section unless mentioned otherwise let’s assume that X is a projective scheme over a
fiel k = k with Char(k) = 0.

By [Har77, Prop 5.2A] that for a noetherian local ring (A,m) and A/m = k we have dimk
m

m2
≥

dimA. On the other hand m/m2 is the tangent space of SpecA at the point x = Z(m).
Let D = k[ε]/ε2 denote the ring of dual numbers. Then by [Har77, Exc. II.2.8] we have

m/m2 1:1↔ {f ∈ Hom(A,D)|(ε) = f(m)}.
The description on the right hand side lets us define a notion of tangent spaces for any moduli
functor. Needless to say if M is representable by a scheme M , for any p ∈M , we have

TpM = {f ∈ Hom(SpecD,M)|f(0) = p}.

Let X be a projective scheme over an algebraically closed field k = k. Let [F ] ∈ MP (Spec k),
i.e. F ∈ Coh(X) is semistable with Hilbert polynomial P . If M represents M we have

T[F ]MP := {F ′ ∈ Coh(X × SpecD)|F ′ ⊗D k ' F}.

Lemma 6.14. Let F be a coherent sheaf on X .

{F ′ ∈ Coh(X × SpecD)|F ′ ⊗D k ' F} ' Ext1
X(F, F )
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Proof. Consider the exact sequence of OX×SpecD-algebras that is split as a sequence of OX -modules

0→ k〈ε〉 → D → k → 0.

Let F ′ ∈ Coh(X × SpecD) be considered as a flat D-module, then tensoring the above short exact
sequence with F ′ we obtain

0→ F → F ′ → F → 0

Hence F ′ is an extension of F by F .
Conversely given such an extension

0→ F
f−→ F ′

g−→ F → 0

we put on F ′ the structure of aD-module by defining ε = f◦g. Note that the map g̃ : F ′⊗DD/ε→ F
given by sending m ⊗ a 7→ ag(m) is an isomorphism where a ∈ k ' D/ε. Indeed, g̃ is surjective
since g is surjective. Furthermore if g(Fm′1) = g(m′2) then there exists an m ∈ F such that
f(m) = m′1−m′2. On the other hand since g is surjective there exists m′ ∈ F ′ such that g(m′) = m.
Hence, for such m′1 and m′2, we obtain

(m′1 −m′2)⊗ a = f ◦ g(m′)⊗ a = ε(m′)⊗ a = m′ ⊗ εa = 0

�

Remark 6.15. Note that by Lemma 2.4, a D-module F ′ is D-flat if F ' F ′⊗Dk is k-flat (which is ob-
vious here) and if εF ′ ' ε⊗F ′. To see the latter we use Nakayama lemma on F ′/εF ′ ' F to conclude
that F ′ as a D-module is generated by same number of elements as F as k-vector space; lets call
this generators of F ′ {fi}i≤i≤r. Thus as k-vector space F ′ is generated by (f1, · · · , fr, εf1, · · · , εfr).
Hence the map (ε) ⊗ F ′ → (ε)F ′ given by ε ⊗ fi → εfi defined on the generators shows that the
map is injective. Hence the lemma above implies T[F ]M' Ext1

X(F, F ).

6.7.1. Small deformation. In order to understand local structure of the moduli beyond the tangent
space we need to allow further deformation. For instance what happens if we want to extend
Fε ∈ M(SpecD) to M(Spec k[ε]/(εn)) for arbitary n? Or more generally to M(SpecA) for local
Artin k-algebras (A,m)?

Recall that Artin rings are by definition rings in which descending chain conditions on ideals are
satisfied. One can show that a ring is artinian if and only if it noetherian of dimension 0. Hence
on a local Artin algebra (A,m) we have mN = 0 for some N � 0. (Exercise!). Finite dimensional
local algebras over k are examples of local Artin algebras.

Denote by Artk the category of local Artinian algebras with morphisms given by local homo-
morphism of rings. Denote by

DF : Artk → Sets

the deformation functor given by

DF (A) := {F ′ ∈ Coh(X × SpecA)|F ′ is A flat and F ′ ⊗A A/m→ F is an isomorphism}/ ∼ .
The equivalence F ′1 ∼ F ′2 if there exists an isomorphism ϕ : F ′1 ' F ′2 such that it commutes with

the respective restrictions to k. We will show that this functor is representable by ÔM,[F ]. In order
to establish this we need some more information about the functor DF (see Theorem 6.21). For
instance, what is the image of DF (σ) for a local homomorphism of Artinian k-algebras σ : B → A.
Since σ(mB) ⊆ mA such morphism always factors through B/mn

B for some n and therefore we
assume that ker(σ) ·mB = 0. Such morphisms are called small extensions. We have the following

Theorem 6.16. Let 0→ a→ B
σ−→ A→ 0 be small extension. Let F be a stable sheaf. We have

(1) The non-trivial fibres of DF (σ) are non-canonically isomorphic to the vector space Ext1(F, F )⊗
a.

(2) im(DF (σ)) = o−1
σ,F (0) where oσ,F : DF (A)→ Ext2(F, F )⊗I is the map that detects obstruction

to lifting FA ∈ DF (A).
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Proof Sketch. For since an = 0, a ' a/an is also an A ' B/a-module. Moreover since am = 0, a can
also be seen as a finite dimensional k-vector space. Thus FB⊗Ba ' FA⊗Aa ' FA⊗Aa/an ' F⊗ka.

The fibres of DF (A), determines the number of ways one can extend a deformation FA ∈ DF (A)
of F to FB ∈ DF (B). The idea is similar to Lemma 6.14, where it is easier to see that extension
FB produces an element in Ext1(FA, FB ⊗B a). Since a is a finite dimensional k-vector space, we
have Ext1(FA, FB ⊗B a) ' Ext1(FA, FA ⊗A a) ' Ext1(F, F⊗)ka.

For (2) note that the image determines the deformation FA of F that admits extension to B.
We will use the following exact sequence that arises out of a spectral sequence 19

Ext1
XA

(FA, FA ⊗ a)→ Ext1
XB

(FA, FA ⊗ a)→ HomXA(FA ⊗ a, FA ⊗ a)
η−→ Ext2

XA
(FA, FA ⊗ a).

Thus we want to know when is an extension FB of FA and FA ⊗ a lies in Ext1
XA

(FA, FA ⊗ a). This
is equivalent to saying FB maps to id ∈ HomXA(FA ⊗ a, FA ⊗ a). Define oσ,F (FA) = η(id). Hence,
FB restricts FA if and only if oσ,F (FA) = 0. �

Coming back to our moduli problem, let M := M s
P (X) represent the moduli functor Ms

P (X).
By Theorem 6.21 and the lemma above we have the following dimension estimate.

Theorem 6.17 (Dimension estimate). For any stable coherent sheaf F

dim Ext1(F, F ) ≥ dim[F ]M ≥ dim Ext1(F, F )− dim Ext2(F, F )

Proof. By the structure of local k-algebra R := ÔM,[F ] '
k[[t1,··· ,td]]

J for some ideal J and d =

dimm/m2. By the discussion above we know T[F ]M ' m/m2 ' Ext1(F, F ). Thus we obtain the
first inequality.

The second follows from showing J is generated by at least r := dim Ext2(F, F ). Let n :=
(t1, · · · , td). The idea is to estimate dim J/nJ and use Nakayama lemma. To do so, note that since
R is Noetherian, Artin–Rees lemma applies and implies that J ∩ nn ⊂ Jn for some n. Let a :=
J+nn/nJ+nn ' J/n∩J ' J/nJ , A := R/mn

R ' k[[t1, · · · .td]]/J+nn and B ' k[[t1, · · · .td]]/nJ+nn.
Thus we have a small extension

0→ J/n ∩ J → B
σ−→ A→ 0.

Since DF is pro-representable by R, the surjection R → A defines as element FA ∈ DF (A). By
Theorem 6.16 the obstruction to lifting this to an element in DF (B)

oσ,F (FA) ∈ Ext2(F, F )⊗ J/nJ

We write oσ,F (FA) =
r∑

α=1
ψα ⊗ fα ∈ Ext2(F, F )⊗ J/nJ , where ψα’s are a basis of Ext2(F, F ). Let

fα ∈ J be lifts of fα. Since oσ,F (FA) = 0 ∈ Ext2(F, F )⊗ a/(f1, · · · , fr), the deformation FA lifts to
FA′ ∈ DF (A′) for A′ ' B/(f1, · · · , fr). By prorepresentability the map R→→ A lifts to q′ : R→ A′.
Thus we get the diagram

R A

A′ A

q

q′

Hence J ⊂ nJ + (f1, · · · fr) + nn ⊂ J + nn. Quotienting this by nn, we obtain

(nJ + (f1, · · · fr) + nn)/nn ' J/J ∩ nn.

Since J ∩ nn ⊂ nJ , we have a surjection (nJ + (f1, · · · fr) + nn)/nn →→ J/nJ . Hence we obtain
nJ + (f1, · · · , fr) = J . Thus J is generated by r elements.

19The argument is taken from Benjamin Schmidt’s notes [?].
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�

Exercise 19 (Nakayama’s lemma). Let (A,m) be a Noetherian local ring and let M be a finitely
generated module on it. Show that mM = M then M = 0. More generally show that if for any
submodule N ⊂M we have mN+N = M then N 'M . Use this to show that M admits a minimal
generating set of length r if and only if M/mM is an r-dimensional vector space over A/m.

Remark 6.18 (Tangent space and smoothness criterion). We do not in fact require M to represent
the moduli functor. Let M be the moduli space of the functor M′P , then one can argue via the

construction using Quot scheme that there exists a natural isomorphism TtM ' Ext1(F, F ) for
any point t ∈ M corresponding to a stable sheaf F ∈ M(k). To this end, let P be the Hilbert
polynomial corresponding to the Mukai vector v and recall that M was is a good geometric quotient
of a subscheme of the Quot scheme Quot := QuotS(V ⊗ OS(−m0), P ). Let [q : V ⊗ OS(−m0) →
→ E] ∈ Quot(k) be a preimage of t under this quotient map. Then similar to the situation of the

Grassmannian we have Tq Quot = Hom(ker(q), E). Consider the long exact sequence of Ext groups
associated to Hom( , E) applied to q

0→ End(E)→ Hom(V ⊗OS(−m0), E)
α−→ Hom(K,E)→ Ext1(E,E)→ 0.

The surjectivity on the right hand side can been seen as follows: by the choice of m0, E was
m0-regular and hence we had Ext1(V ⊗ OS(−m0), E) ' H1(S,E(m0)) = 0. Note that Hom(V ⊗
OS(−m0), E) ' H0(S,E(m0))⊕ dimV ' Mn×n. Since End(E) ' C, the Stab([q]) = id ⊂ PGL(V ).
Hence, the image of α identifies the tangent space of the PGL(V ) orbit of [q]. Hence TtM '
Ext1(E,E). (see [HL10, Prop. 10.11])

Therefore the dimension estimate in Theorem 6.17 can be interpreted as a smoothness criterion;

namely whenever dim Ext2(F, F ) = 0, we have T[F ]M = dim Ext1(F, F ) = dim ÔM,[F ] and hence
M is smooth at t.

An immediate application of the theorem is the following:

Example 6.19 (Curves). On a curve of genus g, since Ext2 = 0 for dimension reasons, by Theo-
rem 6.17 we obtain a smooth projective moduli Mr,d(C) of dimension dim Ext1(E,E) = −χ(E,E)+
dim Hom(E,E) for a simple vector bundle E. By Riemann–Roch, we can compute that the dimen-
sion is 1 + deg(E∨ ⊗ E) + r2(g − 1) = r2(g − 1) + 1.

Remark 6.20. When X is a smooth projective scheme, there is a finer dimension estimate. Consider
the det : M → PicX by sending E 7→ det E . Then there is a natural map of functors DF → DdetF .
Furthermore for a locally free stable sheaf F there are trace maps

tr1 : Ext1(F, F )
T[F ] det
−−−−→Ext1(detF,detF ) ' H1(X,OX)

and similarly tr2 : Ext2(F, F )→Ext2(detF,detF ) ' H2(X,OX).
(13)

The first map is nothing but the derivative of det and the second map sends oσ,F 7→ oσ,detF for any
small extension σ (see [HL10, Theorem 4.5.3]). This gives rise to a similar estimate for the fibre
M(L) of a point [L] ∈ PicX ; namely

dim Ext1
0(F, F ) ≥ dimM(L) ≥ dim Ext1

0(F, F )− dim Ext2
0(F, F )

where Exti0 := ker tri.
Note that for K3 surfaces this improves the original dimension estimate, since in this case PicX

is a discrete set of points but h2(X,OX) = 1. Hence whenever Ext2(F, F ) is one dimensional we
have a smooth moduli just like in the curve case. We come back to this in Section 7.

We are now left to show the pro-representability

Theorem 6.21. Let M := M s
P (X) corepresent the moduli functor Ms

P (X). Then, for any stable

coherent sheaf F , we have an isomorphism of functors DF ' Hom(ÔM,[F ], ).
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Proof. One direction is easier; namely we have for any Artin ringA, a mapDF (A)→ Hom(ÔM,[F ], A).
Indeed, a family FA ∈ DF (A), defines a morphism f : SpecA → M which induces a map of the

structure sheaves OM,[F ] → f∗OSpecA ' A. Taking completion we obtain a map ÔM,[F ] → Â. Since

A is an Artin ring A ' Â.

To construct an inverse, given a map ÔM,[F ] → A any artin ring A, we need to produce a family
FA ∈ Coh(X × SpecA) such that FA ⊗ k ' F . If there was a universal family F ∈ Coh(M ×X)
such that F|[F ] ' F then we would simply pull back this universal family to SpecA.

In general, the idea is to us the GIT quotient construction since on the quot scheme there is
a universal quotient. Recall that p : Rs → Rs/PGLr ' M s arising out of the GIT is a geometric
quotient (see Theorem 6.7) . Hence the fibre over [F ] ∈ M(k) is a closed orbit. Consider a point
[q : H → F ] ∈ p−1([F ]) in this orbit. By Luna’s Etale Slice Theorem Theorem 6.9 there is a
subscheme S ⊂ Rs passing through the [q] ∈ Rs such that the projection S// Stab[q] → M s is tale
near [F ]. But since F is stable, Stab[q] = id ∈ PGLr (see [HL10, Lemma 4.3.2]). Hence S →M s is

étale, or equivalently20 ÔS,[q] ' ÔM,[F ]. Let F denote the restriction of the universal quotient on
S×X ⊂ QuotX/k(H, P )×X. So for any local Artin k-algebra (A,m), admitting a map SpecA→ S

such that Z(m) 7→ [q], will induce a quotient [H → FA] ∈ QuotX/k(H, P )(A) and hence element in

DF (A) via pullback of the universal family. This induces a map OS,[q] → DF .
�

7. Moduli of sheaves on K3 surfaces

Let S denote a complex projective K3 surface, with an ample line bundle OS(1) on it. Let
H := c1(OS(1)) be its first chern class. Recall that ωS ' OS and it admits a unique non-degenerate
2-form C〈σ〉 = H0(S,Ω2

S) called the non-degenerate symplectic 2-form. Hence given two coherent
sheaves E,F on S the Serre duality takes the form

Hom(E,F ) ' Ext2(E,F )?.

Furthermore, since Ext1(E,E) ' Ext1(E,E)?, we obtain a non-degenerate pairing

Ext1(E,E)× Ext1(E,E)→ k.

We will see later on that this is the pointwise description of the symplectic structure on the moduli
of sheaves on K3 surfaces.

Since for K3 surfaces Ext2(E,E) ' End(E)∨, if E is stable we have dim Ext2(E,E) = 1. In
fact there exists a trace map tr : Ext2(E,E) → H2(S,OS) is Serre dual to the natural inclusion
H0(S,OS)→ End(E) given by sending λ 7→ λ · I. Hence is non-trivial. Thus Mv(S)s is smooth of
dimension dim Ext1(E,E).

7.1. Mukai vectors. We have seen that on curves, the only numerical invariants associated to a
locally free sheaf are its rank and degree. On surfaces we have rank, and two chern classes c1 and
c2. Indeed, by the Hirzebruch–Riemann–Roch formula on K3 surfaces we have for any coherent
sheaf E on S χ(E) :=

∫
S ch(E) td(X). Together with the Chern character formulæ ch(E) =

rk(E) + c1(E) + ch2(E) and Todd class td(X) = 1 + 1
2c1(TS) + 1

12(c1(TS)2 + c2(TS)) = 1 + 0 + 2,
we obtain

χ(E) = ch2(E) + 2 rk(E).

Exercise 20. Using HRR show that for S a K3 surface c2(S) := c2(TS) = 24.

Thus we replace the Hilbert polynomial by the numerical invariant called the Mukai vector
associated to E

v(E) := ch(E)
√

td(X) = (rk(E), c1(E), χ(E)− rk(E)).

20here we use that Char(k) = 0
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Another useful formulation of the last term is that χ(E) − rk(E)) = ch2 + rk(E) = 1
2c1(E)2 −

c2(E) + rk(E). For example v(k(x)) = (0, 0, 1), v(L) = (1, c1(L), c1(L)2/2 + 1) etc.

Exercise 21. Compute v0 := v(OS⊕OS)? Show that M s
v0

(S) = ∅. Show that OS⊕OS is semistable.

We can consider the Mukai vector as an element v = (v0, v2, v4) ∈ H0(S,Z)⊕H2(S,Z)⊕H4(S,Z).
Given F ∈ Coh(S), v0(F ) = rk(F ), v2(F ) = c1(F ) and v4(F ) = 1

2c1(E)2 − c2(E).

Definition 7.1 (The Mukai pairing). There is a non-degenerate pairing on H∗(S,Z) given by

〈v, v′〉 = v2v
′
2 − v0v

′
4 − v′4v0

where the product on the right hand side is given by the usual topological cup product on H∗(S,Z).

We also have χ(E,F ) = −〈v(E), v(F )〉. Hence in a T -flat family E on S × T over a connected
scheme T , χ(Et, Et) and hence v(Et) remains invariant. Conversely χ(E(m)) = −〈v(E), v(OS(−m))〉
and hence v(E) determines the Hilbert polynomial of P . Hence Mv(S) is a projective scheme.
Moreover, the stable part is either M s

v(S) = ∅ or it is a smooth quasi-projective variety of dimension
dimMv(S)s = 2 + 〈v, v〉.

Remark 7.2 (Dimension is even). Note that the complex dimension of the moduli of stable sheaves
on a K3 surface is always even. Let v(E) = (r, c, s). Since c = c1(E) ∈ H1(S,Ω1

S) ∩H2(S,Z) =:
H1,1(S,Z), it is enough to observe that the intersection pairing on H1,1(S,Z) is even. One can
in fact identify Pic(S) ' H1,1(S,Z) via the first chern class map21. Now for any L ∈ Pic(S),
χ(L) = 1

2c1(L)2 + 2. Hence c1(L)2 and hence c2 is even. This implies v2 = c2 − 2rc and hence

dimM s
v(S) = v2 + 2 are all even numbers.

7.1.1. The stable locus. In many ways, for a K3 surface S the stable part M s := M s
v(S) is less

difficult to deal with. For one, we know it is smooth. Secondly it always admits a quasi-universal
family (see [HL10, §4.6]). This means there is a coherent sheaf E ∈ Coh(S ×M s) such that for any
T -flat stable family F ∈ Coh(S × T ) with Mukai vector v, there is a map p : T → M s such that
p∗SE ' F ⊗ p∗V where V is a vector bundle on T and pS : S × T → S ×M s is the pullback map.

The family is said to be universal if V is a line bundle. In this case M s is a fine moduli. It is
therefore useful to know when it is actually projective or equivalently for which choice of Mukai
vector there are no strictly semistable sheaves.

Theorem 7.3. Let v = (r, c, s) ∈ H•(S,Z) be such that gcd(r, c · H, s) = 1 and s = χ − r, then
every semistable sheaf with Mukai vector v is stable, i.e. MH

v (S)s is projective.

Proof. Let E be strictly semistable, i.e. there exists a non-trivial torsion free coherent subsheaf
F ( E such that

p(F ) = p(E).

Let v(F ) = (r′, c′, s′) and recall that in this case r′ < r. This means there exists m� 0 satisfying

rχ(F (m)) = r′χ(E(m)). (14)

Since χ(E(m)) = −〈v, v(−OS(m))〉, the equation above translates to

(0, rc′ − r′c, rs′ − r′s)(1,−mH,m2H2/2 + 1) = −(rc′ − r′c)mH − (rs′ − r′s) = 0.

for all m� 0. Thus r(c′H) = r′(cH) and rs′ = r′s.
Since gcd(r, cH, s) = 1, we can write a0r + a2(cH) + a4s = 1. Multiplying this by r′ and using

the relations deduced above we obtain

r′ = a0rr
′ + a2(c′H)r + a4s

′r.

But then r|r′ which is absurd since r′ < r. �

21This is Lefschetz (1,1) theorem, the first instance of the Hodge conjecture.
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Remark 7.4 (Universal family). Under the assumptions of the theorem above, it is known that
there exists a universal family on this projective moduli of stable sheaves. In other words, there
is an M -flat family of sheaves U on M × S such that for any T -flat family E on T × X of stable
sheaves with Mukai vector v, there exists a map γ : T → M and a line bundle L on T such that
γ∗SU ' E ⊗ p∗L where p : T × S → T is the projection.

Hence when v is a primitive Mukai vector M is a fine moduli. See [HL10, §4.6] for the construction
of the universal family.

Non-trivial results of Kushelov ([Kus90] for v2 = −2) and Yoshioka [Yos01] also guarantee that
whenever dimM ≥ 0, i.e. v2 ≥ −2, M is non-empty.

7.2. The case of dimM s
v = 0. This happens when v2 = −2. We have the following

Theorem 7.5. If the expected dimension of M s is 0, when non-empty it is isomorphic to a single
reduced point corresponding to a locally free stable sheaf with Mukai vector v.

Proof. Let [E] ∈M s(k). If there exists [F ] 6= [E] ∈M then we have hom(F,E) = 0 = hom(E,F ).
Indeed this follows from the fact that E 6' F , E is stable and v(F ) = v(E), which means p(E) =
p(F ) and rk(E) = rk(F ). These Hom sets cannot be both empty since χ(E,E) = −v2 = 2.
Therefore, F ' E is the only point of M .

To see why E is locally free, we consider its double dual E∨∨. On smooth surfaces reflexive
sheaves are locally free. We will show that if E is not reflexive, then we can deform E in a
non-trivial family contradicting the fact that dimM = 0.

To do so, let Q := E∨∨/E be supported on a 0-dimensional subscheme Z0 and is of length ` 6= 0.
Consider the QuotS(E∨∨, `). By [HL10, Theorem 6.A.1] we know QuotS(E∨∨, `) is an irreducible
variety of dimension > 0. Hence, for any non-trivial subscheme T passing through q0 : E∨∨ →→ Q,
we can find a non-trivial quotient [q : E∨∨ ⊗OT →→ Q] on S × T such that Q|St0 = Q for a closed

point t0 ∈ T corresponding to q0. Let E := ker(q). Note that Et0 = E and Et 6= E for all t 6= t0.
By openness of stability there exists an open subscheme U ⊂ T such that Et is stable for all t ∈ U ,
which is absurd. �

7.3. The case of dimM s(v) = 2. For what follows we assume that there exists a universal sheaf
E ∈ Coh(M s × S) in the sense of Remark 7.4.

In this section we consider the case when 〈v, v〉 = 0. Such Mukai vectors are said to be isotropic.
We have seen in Section 6.6 thatM(2,−H,1)(S) ' S whenH2 = 4 and hence 〈(2,−H, 1), (2,−H, 1)〉 =
0 . A more general statement is the following:

Theorem 7.6. For an isotropic Mukai vector v on a K3 surface S whenever M s
v(S) has a projective

irreducible component, it is everything; i.e. M s = M . In particular, M is a smooth, irreducible
projective surface. Moreover, it is a K3 surface22.

Remark 7.7. This theorem together with the Theorem 7.3 implies that when v is an isotropic
primitive Mukai vector, the moduli space of stable sheaves M is a K3 surface, and in particular is
irreducible. This is true more generally due to results of Göttsche–Huybrechts and O’Grady

We know M s := M s
v(S) is symplectic. This will be dealt with in Section 7.4. First lets assume

the first part of the theorem, i.e. M s = M , i.e. smooth projective and it is irreducible. This leaves
two possibilities that M is either a K3 or an abelian surface. Thus we only need to show that
H1(M,OM ) = 0. Indeed for abelian surfaces H1(S,OS) is 4 dimensional. Before we prove this we
need a bit of general theory of Fourier–Mukai transform for derived categories of coherent sheaves.

22derived equivalent to S
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7.3.1. Fourier–Mukai transform: a brief overview. Let S and M be a two smooth projective vari-
eties and let E ∈ Coh(S ×M) be a torsion free coherent sheaf. The Fourier–Mukai transform gives
a way to connect the cohomologies of S and M .

Let p : M ×X →M and q : M ×S → S be two projections. The correspondence in cohomologies
use the language of bounded derived category of coherent sheaves. Since we do not need any heavy
machinery from the theory other than using it as an intermediate step before passing to cohomology,
we sketch how to do the latter in more detail here. (see [Huy06, Chapter 2,3] for details).

The advantage of the language of derived categories is that on a smooth noetherian scheme X
any coherent sheaf G admits an injective resolution, i.e. an exact complex

0→ I0
d0−→ I1 → · · · →

of injective OX -modules Ii such that ker(d0) = G. In the bounded derived category of coherent
sheaves Db(X) any such resolution is identified with each other and with the object G. Here
the morphism of complexes G → I• is an example of a quasi-isomorphism. More precisely, any
morphism f• : E• → F • that induces an isomorphism on the level of complex cohomology, i.e.
Hi(f•) : Hi(E•) ∼−→ Hi(F •) for all i, is said to be a quasi-isomorphism.

Given a proper morphism of noetherian schemes f : X → Y , by [Har77, Prop. III.1.2A] Rf∗G ∈
Db(Y ) is isomorphic to the complex f∗I

• and Rif∗G ' hi(f∗I
•) in Db(Y ). A similar statement is

true for RHom( , G) functor.
Formally, let Komb(X) denote the category of bounded complexes of coherent sheaves on X,

the morphisms of this category are given by term-wise maps of coherent sheaves with commutative
square. The bounded derived category of coherent sheaves Db(X) on X is the category such that
there exists a functor Q : Komb(X) → Db(X) that sends quasi-isomorphism to isomorphism and
satisfies the following (universal) property: If F : Komb(X) → D be any functor such that F
sends quasi-isomorphism to isomorphism, then F factors uniquely (up-to isomorphism) through
the derived category Db(X).

Via Q the objects of the derived category is easily identified with bounded complexes of coherent
sheaves

G• := [G0 → G1 → · · · → Gd]

of coherent sheaves considered say in degree 0 to d in this demonstration. In the derived category
one identifies the category of coherent sheaves as a full subcategory as follows: any coherent sheaf
G with the complex G• concentrated in degree 0; namely G0 = G and Gi = 0 when i 6= 0. It comes
with an inherent shift functor [1] : Db(X)→ Db(X) where G•[1]k = G•+1.

Definition 7.8. The Fourier–Mukai transform with kernel E ∈ Coh(X × Y )

ΦE : Db(X)→ Db(Y )

is defined by sending G• 7→ Rp∗(q
∗G• ⊗ E) where p : X × Y → Y and q : X × Y → X are natural

projections.

Example 7.9. Given E ∈ Coh(S ×M) is the universal sheaf. Define ΦE : Db(M)→ Db(S). For any
closed point t ∈M corresponding to a stable sheaf F we have, ΦE(k(t)) = E|t ' F .

When X is a smooth projective variety. Given G• ∈ Db(X), we define the Mukai vector

v(G•) :=
∑

i(−1)i ch(Gi)
√

td(X) ∈ H•(X,Q). Since the Chern character is additive over short
exact sequences we have v(Rf∗G) =

∑
i(−1)iv(Rif∗G). Hence we also have

Definition 7.10. The cohomological Fourier–Mukai transform with kernel E ∈ Coh(X × Y )

fE : H∗(X,Q)→ H∗(Y,Q)

is defined by v 7→ p∗(q
∗v ∪ v(E)). In particular for G ∈ Db(X), v(G) 7→ v(ΦE(G)).
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Since the chern classes of coherent sheaves lie in the even cohomologies, fE maintains the pairity;
i.e. fE(H

even(S)) ⊂ Heven(M) and fE(H
odd(S)) ⊂ Hodd(M).

The aforementioned Fourier–Mukai transformations are compatible, namely the following dia-
gram commutes

Db(S) Db(M)

H∗(S,Q) H∗(M,Q)

ΦE

v v

fE

Furthermore, [Huy06, Proposition 5.33] states that

Proposition 7.11. Let E ∈ Coh(X × Y ) for smooth projective varieties X and Y . If ΦE is an
equivalence of categories then fE is a bijection of rational vector spaces.

As an immediate application we see that if M is derived equivalent to S, then H1(S,Q) '
H1(M,Q) = 0. In fact, in order to conclude that M is a K3 surface we do not really need the
symplectic structure of M . The equivalence of categories also indicates that ωM is trivial (see
[Huy06, Prop. 4.1]).

Hence we need a criterion for derived equivalence. This is given by the following result of
Bondal–Orlov and Bridgeland [Bri99, Theorem 1.1]

Theorem 7.12. The functor ΦE : Db(M) → Db(S) is fully faithful if and only if Hom(Et, Et) ' k
and for any two distinct points t 6= t′ ∈M satisfy

Extk(Et, Et′) = 0

for any integer k. It is an equivalence of categories if additionally Et ' Et ⊗ ωS for all t ∈M .

Proof of Theorem 7.6. Assuming smoothness and irreducibility, we only need to show thatH1(M,Q) =
0. The last condition in Theorem 7.12 is easily satisfied for Et ∈ Coh(S). For the first, note that since
Et are stable bundles Hom(Et, Et′) = 0 for t 6= t′. Furthermore, Ext2(Et, Et′) ' Hom(Et′ , Et)∨ = 0.
Thus χ(Et, Et′) = −〈v(Et), v(Et′)〉 = 0. Hence Ext1(Et, Et′) = 0. So the first condition is also
satisfied. Hence M is derived equivalent to S. Hence by Proposition 7.11 the cohomological
Fourier–Mukai functor fE is a bijection of Q-vector spaces mapping H1(S,Q) → H1(M,Q) and
hence H1(M,Q) = 0.

Let M1 denote the projective component of M s. Since M s ⊂M is open by [HL10, Prop. 2.3.1],
M1 is a also a connected component of M . Therefore we now show the connectedness of M .
Smoothness of M then follows from smoothness of M s.

To see connectedness, let E ∈ Coh(S ×M1) be a universal sheaf23 restricted to the component
M1. Let t ∈M1 be a closed point. Since Et is stable, for any [F ] ∈M represented by a semistable
sheaf F . Since Et is stable and we have p(F ) = p(Et) with Et and F having the same rank, we
deduce that Hom(F, Et) = 0 unless [F ] = t and by Serre duality Ext2(F, Et) = 0 unless [F ] = t.
Using χ(F, Et) = −v2 = 0, we obtain Ext1(F, Et) = 0 unless [F ] = t.

As an upshot we consider the transformation

ϕ : H∗(S)→ H∗(M)

given by v(F ) 7→ v(Rp∗RHom(q∗F, E)). By the previous discussion we obtain that on M1,
Rp∗RHom(q∗F, E) is supported at [F ] ∈M1 and is 0 on all other irreducible components of M . By
Grothendieck–Riemann–Roch, we know

ch(Rp∗RHom(q∗F, E)) · td(M) = p∗ ch(RHom(q∗F, E) · td(S ×M))

and hence ch(Rp∗RHom(q∗F, E)) · td(M) should only depend on ch(q∗F ) which does not vary with
[F ] ∈ M and on ch(E). But if [F ] ∈ M1, an additional argument involvng homological algebra

23in general it is enough to assume E is a quasi-universal sheaf, which always exists by [HL10, §4.6].



42 YAJNASENI DUTTA

shows that Rp∗RHom(q∗F, E) ' k([F ])[2] ∈ Db(M). Therefore, ϕ(v(F )) 6= 0. On the other hand
ϕ(v(F )) = 0 if [F ] /∈M1 by the previous discussion, which is a contradiction. �

Exercise 22. Using the fact that the Chern character is multiplicative on tensor products and that
ci(F

∨) = (−1)ici(F ), show that if E and F are two locally free sheaves on S with isotropic Mukai
vector v, write v(Hom(E,F )) in terms of rk(E) = rk(F ). 24.

7.4. The symplectic form on M s.

Definition 7.13. A symplectic structure on a smooth variety X is a non-degenerate non-trivial
closed two-form, i.e. a nonwhere vanishing global section σ ∈ H0(X,Ω2

X) such that dσ = 0.
A closed global 2-form is equivalent to giving a section OX → Ω2

X , or equivalently a homomor-
phism TX ' Ω∨X → ΩX between the tangent and the cotangent bundle of X.

The symplectic structure σ is non-degenerate if σ : TX → ΩX induces a natural isomorphism, or
equivalently σ : TX ⊗ TX → OX is an everywhere non-degenerate alternating bilinear form.

When a smooth projective variety X admits a non-degenerate 2-form σ, we have an isomorphism
∧σ : ω−1

X → ωX . In particular ω2
X ' OX .

A hyperkähler manifold a generalisation of complex K3 surfaces in higher dimension. Just like
K3 surfaces over the complex numbers, a hyperkähler manifold X is compact Kähler together
with an everywhere non-degenerate symplectic form σ ∈ H0(X,Ω2

X). Furthermore they are simply
connected. In particular, H1(X,Z) = 0. The non-degeneracy of the 2-form then implies that
ωX ' OX . Indeed, consider the short exact sequence

0→ Z→ OX → O∗X → 0

and identify Pic(X) = H1(X,O∗X) and the first chern class with the boundary map c1 : Pic(X)→
H2(X,Z). Since H1(S,OS) = 0, c1 is injective. Thus OX is the only line bundle with trivial chern
class on X.

When v is primitive, the moduli space of stable sheaves Mv(S) on a K3 surface S is a hyperkähler
manifold.

7.4.1. Hilbert scheme of points. These were historically the first example of a higher dimensional
hyperkähler manifolds [Bea83]. Let v = (1, 0, 1 − n), n ∈ Z≥1 be a Mukai vector on a K3 surface
S. Sheaves with Mukai vector v, must be of rank 1. Therefore of the form IZ ⊗ L where IZ is
the ideal sheaf of a closed subscheme Z ⊂ S of dimension 0 and L is a line bundle. Recall the
general principle that any non-trivial rank 1 torsion free subsheaf F ⊂ IZ⊗L automatically satisfy
p(F ) < p(IZ ⊗ L) since the quotient will be supported at zero dimensional subschemes. Therefore
IZ ⊗ L is stable. Hence M := M(1,0,1−n)(S) is smooth projective.

Furthermore, c1(IZ⊗L) = c1(L). Since c1(IZ⊗L) = 0, L must be a line bundle with zero Chern
class. On K3 surfaces, only such line bundle is the structure sheaf OS .

One can identify M(1,0,1−n)(S), the moduli space of sheaves of the form IZ where the length

`(Z) = n with the Hilbert scheme of points S[n] := QuotS/k(OX , n), sometimes referred to as the

punctual Hilbert scheme. Given [q := OST →→ OZ ] ∈ S[n](T ) we let IZ := ker(q) and note that

IZ ∈M(T ). Thus we obtain a morphism of smooth projective schemes S[n] →M . Therefore, it is
enough to show that the map is bijective on k-points. But that is obvious since from the discussion
above we know that k-points of M are given by IZ for some closed subscheme Z ⊂ S of length n.

Beauville showed in [Bea83]

Theorem 7.14. The Hilbert scheme of points S[n] on a K3 surface admits a unique symplectic
2-form σ ∈ H0(S[n],Ω2

S[n]).

24Thanks Chenji and Moritz for catching a mistake in the earlier version of the exercise
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Proof. To show this we use the geometric interpretation of the Hilbert scheme in terms of the n-fold
product space Sn := S × · · · × S. The points on Sn are not necessarily distinct. The symmetric
group Sn acts on Sn by permuting the points and hence the quotient variety S(n) := Sn/Sn

25, the
orbit space with respect to this action, known as the n-th symmetric product of S, does parametrize
n unordered points on S.

Although the symmetric product S(n) parametrises the unordered set of n-points on S, along
the image of the diagonal ∆ij := {(xi)1≤i≤n ∈ Sn|xi = xj}, i 6= j it will have singularities. We let

∆ :=
⋃
i 6=j ∆ij and its image D ⊂ S(n). The Hilbert scheme S[n] admits a morphism h : S[n] → S(n)

by sending a 0-dimensional scheme to the points coresponding to it. It is an isomorphism on
V := S(n) \D. Letting D′ ⊂ D to be the closed subset given by union of image of all intersections
∆ij ∩∆kl, i.e. on D \D′, precisely two points could be the same and nothing else. Then the Hilbert
scheme outside h−1D′ can be identified with Bl∆S

n/Sn.

To keep notations lighter, let us assume n = 2. In this case D′ = D = ∆/S2 and S[2] '
Bl∆S

2/S2. Let η : Bl∆S
2 → S2 be the blow up map. We have the following fibre square

Bl∆S
2 S[2]

S2 S(2)

η

ρ̃

h

ρ

Let σ ∈ H0(S,Ω2
S) be the unique holomorphic symplectic form on the K3 surface and let p1 : S2 → S

be the natural projections. Then define σ̃ := p∗1σ+p∗2σ is a 2-form on S2. Indeed, σ̃ ∈ H0(S2, p∗1Ω2
S⊕

p∗2Ω2
S) ⊆ H0(S2,Ω2

S2). Note that it is invariant under the action of S2. Hence its pullback η∗σ̃ is

also S2 invariant, which implies that there exists τ ∈ H0(S[2],Ω2
S[2]) such that ρ̃∗τ = η∗σ̃. Since

ωS2 ' p∗1ωS ⊗ p∗2ωS ' OS2 , the divisor associated to the section ∧2σ̃ ∈ H0(S2, ωS2) is zero. But
since ρ̃ is ramified along the exception E, we have the following equality

ρ̃∗div(∧2τ) + E = div(∧2ρ̃∗τ) = div(∧2η∗σ̃) = η∗div(∧2σ̃) + E = E.

All in all, we have ρ̃∗div(∧2τ) = 0 and hence div(∧2τ) = 0. In general when n > 2, one needs to
use Hartog’s theorem to extend the 2-form from the locus of the Hilbert scheme where it looks like
an Sn quotient of a blow up to all of S[n].

We now argue that this is the only symplectic form S[n] could have. To see this, note that

h0(S[2],Ω2
S[2]) = h0(Bl∆S

2,Ω2
Bl∆S2)S2 = h0(S2,Ω2

S2)S2 = 1.

The general case will again require Hartog’s theorem. �

S[n] is in fact simply connected. For an argument see the second part of the proof of [Bea83,

Lemme 1] or [HL10, Prop. 6.2.4]. Therefore S[n] is a Hyperkähler manifold.

7.4.2. Other moduli of sheaves. Let v be a primitive Mukai vector. In this case M := Mv(S) is
a smooth projective moduli space of dimension v2 + 2consisting of only stable sheaves. These are
deformation equivalent to the Hilbert scheme of points S[n] for n := 1

2(v2) + 1 (see [HL10, Theorem

6.2.16], i.e. there is family f : X → ∆ over the unit disc ∆ such that X0 ' S[n] and Xt 'Mv(S) for

some t 6= 0 ∈ ∆. In particular they have the same Betti numbers as S[n]. Indeed, the flat family
f of smooth projective varieties are smooth. Hence by the Ehresmann’s lemma for any t0 ∈ ∆,
there is an analytic open subset U 3 t0 such that f−1(U) ' U × Xt0 . Hence π1(M) = 0. Also
by semi-continuity of dimension of coherent cohomologies and the Hodge decomposition we have
h0(M,Ω2

M ) = 1.

25Note that when a finite group G acts on a quasi-projective vareity X, the quotient X/G is constructed by taking
quotients of G-invariant affine covers. Hence the quotient with quotient topology is again a variety.
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The moduli spaces Mv(S) admit a non-degenerate symplectic 2-form. When a universal sheaf E
exists on S×M , we let as before let p : S×M →M and q : S×M → S be the natural projections.
Then roughly speaking the symplectic form is a global version of the following

TM ⊗ κ(t) ' Ext1(Et, Et)
that we have seen in Remark 6.18. More precisely, let Extip(E , E) := HiRp∗RHom(E , E) be the
relative ext-sheaves. Then

TM ' Extip(E , E)

(see [HL10, Theorem 10.2.1] for a thorough treatment in a more general set-up). The everywhere
non-degenerate alternating 2-form is then given by the composition

TM × TM
'−→ Homp(E , E [1])×Homp(E [1], E [2])

α−→ Ext2p(E , E) ' OM
where α is given by composition in the derived category and the last isomorphism follows from the
fact that fibrewise Ext2(Et, Et) ' k.

7.5. Example birational to the Hilbert scheme. Let v be a primitive Mukai vector. While
any moduli space of sheaves Mv(S) is deformation equivalent to S[n] for n = 1

2(v2 + 2), it is often

the case that Mv(S) is in fact birational to S[n], i.e. there exists an open subset in Mv(S) that is
isomorphic to an open subset of the Hilbert scheme. In this section we describe the example in
[HL10, Theorem 11.3.1] which demonstrates this phenomenon.

Example 7.15. Let (S,H) be a polarised K3 surface. Define the numbers k(n) := (n2 + n)H2 + 2.

Then for v = (2, (2n + 1)H,−k(n)) and n � 0 Mv(S) ' S[`(n)] where `(n) = 1
2H

2 + 2k(n) =
(2n+1)2H2

2 + 3.

Proof. The open set in U ⊂Mv(S) onto which we will construct an isomorphism from an open set

in S[`(n)] is given by the set of µ-stable and locally free sheaves. [HL10, Theorem 9.4.3 and 9.4.2]
ensure the openness of this locus.

Let Z be a general length `(n) 0-dimensional subscheme of S. In what follows we construct a
µ-stable locally free sheaf FZ ∈ U(C). This construction method, is known as Serre construction
and is quite useful in constructing examples of µ-stable sheaves on surfaces. Note that since H is
ample, by Kodaira vanishing and Hirzebruch–Riemann–Roch 26 we have

χ(OS((2n+ 1)H)) = h0(S,OS((2n+ 1)H)) =
(2n+ 1)2H2

2
+ 2 = `(n)− 1.

Therefore for Z general enough, there are no curve in the linear system H0(S,OS((2n+ 1)H)) that
vanishes along any subscheme Z ′ of length `(n)− 1 in Z, in other words the map H0(S,OS((2n+

1)H)) → H0(Z ′,OZ′) is surjective. Indeed, this is because H embeds S ↪→ P := P
1
2
H2+1 and

general hypersurfaces of degree (2n + 1) on P intersects with S in (2n + 1)2H2 points. Therefore
(2n+ 1)2H2 + 1 points in general positions determine one such hypersurface and (2n+ 1)2H2 + 2
points in general positions lie in no such hypersurfaces.

In particular, H0(S, IZ ⊗OS((2n+ 1)H)) = 0 where IZ is the ideal sheaf defining Z, and hence
we have the following short exact sequence in cohomologies

0→ H0(S,OS((2n+ 1)H))→ H0(Z,OZ)→ H1(S, IZ ⊗OS((2n+ 1)H))→ 0.

Since h0(Z,OZ) = `(Z) = `(n), we obtain h1(S, IZ⊗OS((2n+1)H)) = dim Ext1(OS , IZ⊗OS((2n+
1)H)) = 1. By Serre duality we have dim Ext1(IZ ⊗OS((2n+ 1)H),OS) = 1, and therefore there
exists a unique extension

0→ OS → FZ → IZ ⊗OS((2n+ 1)H)→ 0

26or, Riemann–Roch on surfaces
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Since c1(FZ) = (2n + 1)H, if we show that FZ is µ-stable and locally free, we have given a well-

defined map from S[n] → U . To see why it is injective note that H0(S, FZ) = 1 and hence there
can be a unique morphism OS → FZ .

First we argue why FZ is locally free. By the choice of Z, any length `(n)− 1 subscheme Z ′ ⊂ Z
satisfies s|Z′ = 0 ⇒ s = 0. Hence by the Cayley–Bacharach Theorem 7.16, we obtain the desired
local freeness.

To see why it is µ-stable. Let L ⊂ FZ be a rank 1 torsion free sheaf such that µ(L) ≥ µ(FZ).
Since FZ is locally free, we might as well replace L by its reflexive hull which is a line bundle 27.
Such a line bundle satisfies

c1(L) ·H ≥ 1

2
c1(FZ) ·H =

2n+ 1

2
H2,

and hence it cannot be a subsheaf of OS . Thus there is a non-trivial injection L ↪→ IZ ⊗OS((2n+
1)H) which defines a curve C as a section ofH0(S,L−1⊗OS((2n+1)H)) vanishing along Z. We show
that such curve cannot exist for Z in general position by arguing that h0(S,L−1⊗OS((2n+1)H)) =
h0(C,OS(C)) ≤ `(n)− 1. To this end note that h0(C,OS(C)) = 1

2C
2 + 2 and that

C2 = ((2n+ 1)H − c1(L))2 = 2(2n+ 1)

(
2n+ 1

2
H2 − c1(L) ·H

)
+ c1(L)2 ≤ c1(L)2

where the last inequality follows from the fact that L destabilises FZ . By the Hodge index theorem

we know c1(L)2 ≤ (c1(L)·H)2

H2 . And finally, observe that since L ↪→ OS((2n + 1)H), c1(L) · H ≤
(2n+ 1)H2. Putting everything together, we obtain

h0(S,OS(C)) ≤ (2n+ 1)2H2

2
+ 2 = `(n)− 1.

Hence the result.
�

Theorem 7.16 (Cayley–Bacharach property). Let Z ⊂ X be a local complete intersection of
codimension two28. Let L and M be line bundles on X. Let E be any extension of M⊗IZ by L,
i.e.

0→ L → E →M⊗ IZ → 0.

Then E is locally free if and only if the pair (L−1⊗M⊗ωX , Z) has the Cayley–Bacharach property
which is described as follows

Let Z ′ ( Z is a subscheme with `(Z ′) = `(Z)− 1. Then for any s ∈ H0(X,L−1⊗M⊗ωX) with
s|Z′ = 0 satisfy s|Z = 0.

7.6. The singular moduli space. When the Mukai vector v is not primitive the moduli space
Mv(S) is still symplectic in the sense that it admits a global 2-form that is non-degenerate on
the regular locus. The stable part M s

v(S) is non-compact, and Mv(S) \ M s
v(S) consists of the

S-equivalence classes of strictly semistable sheaves. It is natural to wonder whether this singular
projective symplectic variety admits a resolution to a hyperkähler manifold. For a primitive Mukai
vector v0, we describe the answer on a case-by-case basis.

(1) When v = mv0 and v2
0 = −2. We have seen in Theorem 7.5 that Mv0(S) = {pt}. Let E

denote the stable sheaf corresponding to this point. For m ≥ 2, v2 < −2 and hence M s
v = ∅.

Therefore Mv(S) = {[E⊕m]}.
(2) When v = mv0 and v2

0 = 0. We have seen in Theorem 7.6 that Y = Mv0(S) is a K3 surface
such that there exists a derived equivalence Φ: Db(S)→ Db(Y ) sending Φ([F ]) = κ([F ]) for
[F ] ∈ Y (C). In the level of cohomology we can write ϕ(v0) = (0, 0, 1). Since ϕ : H∗(S,Z)→

27recall that µ(L) ≤ µ(L∨)
28e.g. reduced points in a smooth surface
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H∗(Y,Z) is a Hodge isometry we have ϕ(mv0) = (0, 0,m). Hence Mv(S) ' M(0,0,m)Y '
Y (m) the symmetric product of m-copies of Y . Hence Mv(S) admits a symplectic resolution

given by the Hilbert–Chow map Y [m] → Y (m) 'Mv(S).
(3) When v = mv0 and v2

0 = 2: In this case we have seen that Mv0(S) is a hyperkhler manifold

deformation equivalent to S[n] where n = 1
2v

2
0 + 1.

When m = 2, O’grady in [O’G99] shows that the moduli space X := M(2,0,−2)(S) is

singular. Moreover, the singular locus Xsing ' Mv0(S)(2) and hence it is of codimension
2 in 10-dimensional X. He showed that it can be desingularised to a hyperkhler manifold
of dimension 10, now famously known as OG10. This means the symplectic form on the
regular locus X \Xsing extends to a symplectic form on OG10. This hyperkähler’s second
Betti number is 24 and hence is topologically different from the Hilbert scheme of points. Its
complete list of Betti numbers and the Hodge decompositions were calculated only recently
in [dCRS21].

When m > 2 it is shown in [KLS06] that the singular locus of Mv(S) does not admit a
symplectic resolution.

(4) when v2
0 > 2. In this case the results of [KLS06] shows that the singular locus of Mv(S)

does not admit a symplectic resolution.
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