DECOMPOSITION THEOREM FOR CURVES

YAJNASENI DUTTA

The main goal of this talk is to complete Step 1 from the proof of Statement 1 of Lecture
8. In other words, establish the P(1,0) case of the decomposition theorem. We first recall the
statement:

Theorem 1.1 [Sab05, Moc07]. Let X be a smooth projective curve and let a: X — SpecC
denote the structure map for the curve. Let (T,S) be a polarized regular pure twistor D-module
on X of weight 0. Then, the push-forward (&;__ja4+T,L,a+S) is a polarized graded Lefschetz
twistor structure.

We refer to the previous lectures for the precise definitions of polarized regular pure twistor
D-modules and their pushforwards. However we do briefly recall the following correspondence
(see e.g. [Moc07, Theorem 20.1]). For simplicity, we restrict to the weight 0 case.

Theorem 1.2. There is a one-to-one correspondence between the variation of polarized pure
tuistor structures of weight 0 which are generically defined over X and the regular pure twistor
D-modules of weight 0 whose strict support is X.

The correspondence goes via harmonic bundles since a variation of polarized pure twistor
structures of weight 0 underlies a harmonic bundle (F,dg,0,h) on X := X\ D for D a finite set
of points (assume, only one point for simplicity). We let X := X x Cy and £ := X x C) and
p the respective projections to X (or X). From this data, we obtain an R y-triple (&, &, Cp).
On its naive algebraic extension bundle D€ (i.e. roughly speaking the twistor incarnation of the
algebraic extension of E over X) we have a V-filtration U.(’\O)DE defined on “¢| 2 (\o,e0)» Where
2 (Mo, €0) = X x A(Ag, €9) namely a slice of the product space over the disc A(Ag, €p) around
Ao € Cy. Define &(2Z (Mg, e0)) := the Ry submodule of M€ generated by Ugo)‘jg. Then
the glued R 2-module gives rise to a polarized R g -triple ((&, &, €), (Id,Id)) underlying a pure
regular twistor D-module.

Conversely, given such a triple, generically on X, namely for a Zariski open subset X the
Rx-triple T|x is a A-deformed bundle of the harmonic bundle (E,dg,0g,h). The regularity
implies tameness of this harmonic bundle.

Proof Sketch. For the proof of Theorem 1.1 we follow [Moc07, §20.2.2] and it relies on the
Dolbeault lemma for a singular Hermitian line bundle due to Zucker. A different proof can be
found in [Sab05, §6.2.b-6.2.f].
The proof goes via a series of quasi-isomorphisms leading up-to
HITAIMX (Re, (€ ® Q%) ~ Harm’ @O,
where Harm'’ is a finite dimensional vector space. Thus by definition the pushforward is a
twistor structure of weight ¢. The Lefschetz map in this case concerns only ¢ = 0 and looks like
L£:=al¢ — al¢®T(0)
where T(0) is the Tate twistor structure of weight 0.

Roughly speaking, the reason why such vector spaces Harm'’ are independent of X is they are
generated by the kernel of the Laplace operator

DN D+ D*DY = (14 |A?) (95 + 0)*(0p + 0) + (0p + 0)(0p + 6))

acting on certain finite dimensional space of global L2-sections. Here D* is the connection
associated to E*.
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The crux of the proof lies in constructing this series of quasi-isomorphisms. It relies on the
classical Dolbeault lemma for C* rank 1 flat bundle (V, V) on the disc. This is due to Zucker
[Zuc79] who established a quasi-isomorphism between the naive algebraic extension "V of V on
X and the complex £*(V) ) of L*-sections of V © A% with L2-derivatives [Zuc79, Theorem 6.2].
For all A € Cy, one can apply this construction to the bundles & associated to &|y and extend
these ideas to construct a complex S(& ® Q'QE)) on 2 whose fibres are certain A-holomorphic

sections of a sub-complex £° (5)‘)(2) C /J'(E)‘)@). This subcomplex is defined so that it is soft
with respect to the global section functor and the i-th cohomology of the global section complex
is a finite dimensional vector space Harm® [Moc07, Lemma 20.23-24] and hence is independent
of \.

On the other hand, the relation between the complexes a.S(€ ® Q;;) to Ra.(€ ® Q%) is
not so straightforward. To this end, one uses the V-filtration associated to =& defined over a
neighbourhood A(\g, €g) and the pieces of the weight filtrations whose sections are L? in order to
construct Q*0)® on 2 (Mo, €0) for each A\g € Cy. Using Zucker’s norm estimates one shows that
that Q(A)’.|XX{A0} is quasi-isomorphic to S(€ ® Q;’;)!XX{/\O}. For a discussion on how L?-norm
estimates on a harmonic bundle behaves with respect to the sections of parabolic filtrations,
V-filtrations and the monodromy weight filtrations see Lecture 14. Since the cohomologies of
the pushforwards of both complexes form coherent sheaves on the disc A(\g, €p) and their fibres
are already isomorphic, one can argue using the Nakayama lemma for graded rings to conclude

H' (Ra QM) =~ H (0. S(E @ Q57))] 5 ag ) = HArm' ©cOA(rg c)-

This is [Moc07, Lemma 20.38]. The quasi-isomorphism between the complexes OM* and
€ ® Q% follows from the properties of the V-filtration [Moc07, Lemma 20.35] completing the
proof.
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