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Objects of study

Classify smooth quasi-projective varieties.

Equivalent data for curves: take a projective compactification
(C , p1, · · · , pk ).

Equivalent data for genus: ωC (p1 + · · ·+ pn). We get some moduli space
of curves. The compactification contains nodal curves. pi /∈ nodes.

Higher dimension: take a projective compactification (X ,D) with D

simple normal crossing.

Not a one to one correspondence. Pass to the log canonical model.
X ′ ' Proj(⊕mΓ(X ,m(KX + D))). When KX + D is big, the ring is finitely
generated as a graded algebra over the base field. and X ∼bir X

′. Define
D ′ := image(D).

The compactification contains KSBA STABLE PAIRS.

Nodes  Nodes in codimension 1. genus>2  KX + D ample.
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Where GIT fails.

Chow semistable Ñ KSBA stable (Wang–Xu’14).

But there are families that do not admit any Chow semistable
compactification.

Example (Wang and Xu)

Y =Weighted blow up of
(w25(xyz4 + y6) + w21z10 + t30w31 + x31 + y31 + z31 = 0) ⊂
P(x ; y ; z ;w )× C[t] at (0, 0, 0, 1)× 0.

What fails: Chow semistablity MumfordÑ multxY0 < (dim Y0 + 1)!.
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Definition: Stable Pairs

(X ,D) is a stable pair if X is

equidimensional with at worst nodal
singularities in codim 1 and D is an effective Q-divisor such that the
pair’s normalization is log canonical and KX +D is Q-Cartier and ample.
Family of stable pairs
A family of stable log-varieties f : (X ,D)→ S ,

with S a normal variety;

variety = reduced but possibly reducible

pair (X ,D), i.e. X equi-dimensional at worst nodal in codim 1 and D is
an effective Q-divisor.

f flat proper surjective morphism

D avoids the codimension 1 singular points of every fiber

has pure dimX − 1 dimensional fibres over S .

KX /S + D is Q-Cartier

(Xs ,Ds ) is a connected stable log-variety for all s ∈ S , in particular,
KXs

+ Ds is ample.
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Why normality of S is necessary?

4



What kind of divisors shall we allow?

Relative Cartier divisors
Let f : X → S be a flat morphism of schemes. A relative (effective)
Cartier divisor is

effective Cartier divisor D + D is flat over S

⇐Ñ

D is flat + Ds effective Cartier for all s ∈ S .

 good moduli functor that is representable by an open subscheme of
HilbX /S .

Example: When f is smooth and S normal, then any Weil divisor D on
X mapping surjectively onto S and

that does not contain any irreducible
component of the fibres is relative Cartier divisor. (cf. [Moduli Book,
Theorem 4.21, Kollár]).
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Hassett’s example

(Y ,DY ) is log canonical and KY + 1

r DY is Cartier. χ(OD∞ ) = χ(OP1 ) = 1

but χ(OD0
) = 1

r (1− χ(OP2 (−r )) = − (r−3)
2

. Therefore, flat limit of D∞ must
have embedded points.
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Cayley-Chow fibres: divisorial pullbacks

For any morphism g : T → S , consider
W := X ×S T X

T S

gX

g

Define DW := g [∗]D := Div (g−1X (D))

Theorem [Kollár, Moduli Book, §4]
Let S be reduced and f : (X ,D)→ S satisfies the following:

(A) f is flat
outside codim 2 subset on each fibre, of pure relative dimension n and
geometrically reduced fibres. (B) D has pure relative dimension n − 1

(C) D does not contain any codim 1 points of Xs . Then the following
are equivanent

• Well defined under pullback.

i.e. (g ◦ h)[∗]D = h[∗]g [∗]D

• D is a relative, generically Cartier divisor.

i.e. Ds = DUs

• g : D → S is flat at generic points of Ds for every s ∈ S .
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Relative Mumford divisors

Let f be flat

with S2 fibres of pure dimension n

.

D is a relative Mumford
divisor if

• there is U ⊆ X with codimXs
(Xs \U) ≥ 2 and D|U is relative Cartier.

• Ds does not contain any codim 1 singular points of Xs

• D = D|U .

The moduli space is way too big.
Example

Let D = (x = 0) ⊂ A2

x ,y .

A deformation of D over k [ε]
(ε2) is also allowed to

be non-Cartier at (0, 0).

D
g
ε = Zeroes(x2, xy + εg , εx ).

Away from (0, 0), Dg
ε = (x + εy−1g = 0),

hence Cartier. For g /∈ (x2, xy ) Dg
ε has no embedded points. Two such

deformations D
g
ε and D

g ′
ε are equivalent iff g − g ′ ∈ (x2, xy ).

The deformation space is infinite dimensional.
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The deformation space is infinite dimensional.
8



Upshot

Upshot:

• The moduli functor is defined for reduced schemes.
• In general techniques from Hilbert schemes: does not ignore

embedded point.
• Techniques from Cayley-Chow: works only over seminormal base.
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Kollár’s solution: K-flatness

Let D be a Mumford divisor

D is called K-flat if for every finite morphism π : X → Pn
S , π∗D is a y

Cartier divisor.
Definition: π∗(D)

If Dred → π(D)red is birational and π generically étale on the fibres Ds .
then π∗D := scheme theoretic image of D .

In general, define it to be the divisorial support DSupp(π∗OD ).

Key Theorem [Kollár, Moduli Book, Theorem 2.93]
D is relatively Cartier iff τ [∗](D) is relatively Cartier for all Artin
subscheme τ : A ↪Ï S .
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Divisorial support of a coherent sheaf

Relative Notion
We assume F is generically flat over S , and dim Supp(F) = dimX − 1.

Establish a definition on the locus U where F is flat and
Cohen-Macaulay. Define DSuppS (F) := DSuppS (F|U )

Compatibility

Let h : T → S then DSuppS (h∗XF) ' h[∗] DSuppS (F).
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Where is the definition coming from?

Cayley–Chow hypersurfaces
Let S be a scheme and F be a generically flat family of pure
dimensional d coherent sheaves on Pn

S . Then define

IncS := {(x ,H0,H1, · · ·Hd )|x ∈ H0 ∩ · · ·Hd}. Consider

Pn
S

σÎ IncS
π→ (P̌n)d+1

Define Ch(F ) := DSuppS (π∗σ∗F).

Simple fix for divisors in Pn
S : Only consider the Mumford divisors for

which Ch(π∗OD ) is relatively Cartier.

Theorem 61, Kollár’19.
Ch(F) is relatively Cartier iff p∗(Supp(F)) is relatively Cartier for all
OS -linear projection p : Pn

S 99K Pd+1

S that is finite on DSupp(F).
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Main Theorem (Kollár’19)

K-flatness is Representable!

Theorem 4
Let f : X → S be a flat, projective morphism with S2 fibres of pure
dimension n. Then the functor KDivd (X /S ) of K-flat relative Mumford
divisors of degree d is representable by a separated scheme of finite
type KDivd (X /S ).
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Some properties and difficulties

1. K-flat deformations do not depend on the ambient variety.

2. Is there a universal deformation scheme for K-flat deformations of a
reduced projective scheme?

3. K-flatness is equivalent to flatness wherever f is smooth.
4. Hard to check: Check all finite maps X → Pn for all linear systems

in X . Computed examples show checking for linear projections
X ⊂ PN 99K Pn is enough.

5. The obstruction theory of K-flat is not known.
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New definition of the moduli functor

A family of stable pairs of volume ν is a morphism f : (X , cD)→ S such
that

• f is flat and projective,

• D is a K-flat family of divisors,
• KX + cD is Q-Cartier, relatively ample,
• the fibres (Xs , cDs ) are semi-log canonical, and
• the volume ν : = (KXs

+ cDs )n is fixed.
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Questions?
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Thank You!
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