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The compactification contains KSBA STABLE PAIRS.

Nodes ~~ Nodes in codimension 1. genus>2 ~~ Kx + D ample.
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Where GIT fails.

Chow semistable = KSBA stable (Wang—Xu'14).

But there are families that do not admit any Chow semistable
compactification.

% =Weighted blow up of
(W2 (xyz* + y6) + w2z10 4 30,31 4 x31 4 (31 4 ;31 _ )
P(x; y; z;w) x C[t] at (0,0,0,1) x 0.

Mumford

What fails: Chow semistablity = = mult, %4 < (dim %5 + 1)!.
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What kind of divisors shall we allow?

Let f: X — S be a flat morphism of schemes. A relative (effective)
Cartier divisor is

effective Cartier divisor D + D is flat over S

—

D is flat + Ds effective Cartier for all s € S.

~ good moduli functor that is representable by an open subscheme of
Hilbx/s.

Example: When f is smooth and S normal, then any Weil divisor D on
X mapping surjectively onto S and that does not contain any irreducible
component of the fibres is relative Cartier divisor. (cf. [Moduli Book,
Theorem 4.21, Kolldr)).

(&}
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Hassett's example

X'Z C'(,@’px P :CD(L.'))
Cone vor its embedding

V"l?" (9(2/') 7(0 “A-. W
D-Lsy, by -l

£ X

(Y, Dy) is log canonical and Ky + Dy is Cartier. x(Op_) = x(Op) = 1

but x(Op,) = 2(1 — x(Op2(—r)) = J’;—& Therefore, flat limit of D, must

have embedded points. 6
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Wi=Xxg T -5 X
For any morphism g: T — S, consider l l
T—% 5

Define Dy, := gi*!D := Div(gx*(D))

Let S be reduced and f: (X, D) — S satisfies the following: (A) f is flat
outside codim 2 subset on each fibre, of pure relative dimension n and
geometrically reduced fibres. (B) D has pure relative dimension n — 1
(C) D does not contain any codim 1 points of Xs. Then the following
are equivanent

e Well defined under pullback. ie. (g o h)*'D = hl*lglID
e D is a relative, generically Cartier divisor. i.e. Ds = Dy,

e g: D — S is flat at generic points of D for every s € S.
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Relative Mumford divisors

Let f be flat with S, fibres of pure dimension n. D is a relative Mumford
divisor if
e there is U C X with codimx_ (X5 \ U) > 2 and D|y is relative Cartier.

e D, does not contain any codim 1 singular points of Xj
e D=D|y.

The moduli space is way too big.

Let D = (x =0) C Aiy. A deformation of D over %{J] is also allowed to
be non-Cartier at (0, 0).

D¢ = Zeroes(x?, xy + €g, ex). Away from (0,0), D¢ = (x +ey~1g = 0),
hence Cartier. For g ¢ (x2, xy) D¢ has no embedded points. Two such
deformations D€ and D¢ are equivalent iff g — g’ € (x?, xy).

The deformation space is infinite dimensional.
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e The moduli functor is defined for reduced schemes.

e In general techniques from Hilbert schemes: does not ignore
embedded point.

e Techniques from Cayley-Chow: works only over seminormal base.
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Let D be a Mumford divisor

D is called K-flat if for every finite morphism m: X — Pg, m,Disay
Cartier divisor.

If Dyoq — 71(D)yeq is birational and st generically étale on the fibres D;.
then 7, D := scheme theoretic image of D.

In general, define it to be the divisorial support DSupp(r,Op).

D is relatively Cartier iff T[*](D) is relatively Cartier for all Artin
subscheme 7: A — S.
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Divisorial support of a coherent sheaf

Diviswvial
su(’foﬂiv
z Lo

We assume F is generically flat over S, and dim Supp(%F) = dim X — 1.
Establish a definition on the locus U where % is flat and
Cohen-Macaulay. Define DSuppg () := DSupps(F|u)

Let h: T — S then DSupps(hxF) = h* DSuppg(F).
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Where is the definition coming from?

Let S be a scheme and & be a generically flat family of pure
dimensional d coherent sheaves on P¢. Then define
Incs := {(x, Ho, H1,- - Hy)|x € Ho N --- Hy}. Consider

P2 & Incs 5 (Pr)d+t
Define Ch(F) := DSuppg(m.0*F).
Simple fix for divisors in PZ: Only consider the Mumford divisors for

which Ch(m,Op) is relatively Cartier.

Ch(F) is relatively Cartier iff p,(Supp(7F)) is relatively Cartier for all
Os-linear projection p : P¢ --» IP"S’” that is finite on DSupp(7F).
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Main Theorem (Kolldr'19)

K-flatness is Representable!

Let f: X — S be a flat, projective morphism with S, fibres of pure
dimension n. Then the functor KDiv,(X/S) of K-flat relative Mumford
divisors of degree d is representable by a separated scheme of finite
type KDivy(X/S).
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Some properties and difficulties

1. K-flat deformations do not depend on the ambient variety.

2. Is there a universal deformation scheme for K-flat deformations of a
reduced projective scheme?

3. K-flatness is equivalent to flatness wherever f is smooth.

4. Hard to check: Check all finite maps X — P” for all linear systems
in X. Computed examples show checking for linear projections
X c PV --5 P" is enough.

5. The obstruction theory of K-flat is not known.
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New definition of the moduli functor

A family of stable pairs of volume v is a morphism 7: (X, cD) — S such
that

e f is flat and projective,
e D is a K-flat family of divisors,
e Kx + cD is Q-Cartier, relatively ample,

e the fibres (X;, cDs) are semi-log canonical, and

the volume v: = (Kx, + cDs)" is fixed.



Questions?



Thank You!



