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Abstract. We give e�ective bounds on the generation of pushforwards of log-pluricanonical
bundles for klt pairs twisted by ample line bundles. This gives a partial answer to a conjecture
proposed by Popa and Schnell. We prove two types of statements: �rst, more in the spirit
of the general conjecture, we show generic global generation with predicted bound when
the dimension of the variety if less than or equal to 4 and more generally, with a quadratic
Angehrn-Siu type bound. Secondly, assuming that the relative canonical bundle is relatively
semi-ample, we make a very precise statement. In particular, when the morphism is smooth,
it solves the conjecture with the same bounds, for certain pluricanonical bundles.

1. Introduction. The main purpose of this paper is to give a partial answer to a version
of the Fujita-type conjecture proposed by Popa and Schnell [PS14, Conjecture 1.3], on the
global generation of pushforwards of pluricanonical bundles twisted by ample line bundles.
All varieties considered below are over the �eld of complex numbers.

Notation 1. We �x

N =

{
n ; when n 6 4(
n+1
2

)
; otherwise

in what follows. Our results also work if N was taken to be the e�ective bounds arising from
the works of Helmke [Hel97,Hel99].

Conjecture 1.1 (Popa-Schnell). Let f : X → Y be a morphism of smooth projective varieties,

with dimY = n, and let L be an ample line bundle on Y . Then, for every k > 1, the sheaf

f∗ω
⊗k
X ⊗ L

⊗l

is globally generated for l > k(n+ 1).

In [PS14], Popa and Schnell proved the conjecture in the case when L is an ample and
globally generated line bundle, and observed that it holds in general when dimY = 1. With the
additional assumption that L is globally generated, they could use Kollár and Ambro-Fujino
type vanishing along with Castelnuovo-Mumford regularity to conclude global generation. We
remove the global generation assumption on L, by making a generation statement at general
points with quadratic bounds.

Theorem A. Let f : X → Y be a surjective morphism of projective varieties, with Y smooth

and dimY = n. Let L be an ample line bundle on Y . Consider a klt pair (X,∆) with ∆ a

Q-divisor, such that for some integer k > 1, k(KX + ∆) is linearly equivalent to a Cartier

divisor P . Then the sheaf

f∗OX(P )⊗ L⊗l

is generated by global sections at a general point y ∈ Y for all l > k(N + 1) with N as in

Notation 1.
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As a particular case of Theorem A, we have the following corollary, which is a generic version
of Conjecture 1.1 with Angehrn-Siu type bound.

Corollary B. Let f : X → Y be a surjective morphism of smooth projective varieties, with

dimY = n. Let L be an ample line bundle on Y . Then for all k > 1, the sheaf

f∗ω
⊗k
X ⊗ L

⊗l

is generated by global sections at a general point y ∈ Y for all l as in Theorem A.

According to [PS14, �4], this could be interpreted as an e�ective version of Viehweg's weak-

positivity for f∗ω
⊗k
X/Y [Vie83] (also see [Kol86, Theorem 3.5(i)]).

One can in fact describe the locus on which global generation holds, but not in a very
explicit fashion. This su�ces however in order to deduce the next Theorem, where assuming
semiampleness of the canonical bundle along the smooth �bres, we prove that the global gen-
eration holds at the smooth (regular) values of f in Y . The relative semiampleness hypothesis
was removed by Deng [Den17], later was improved by Iwai [Iwa17] when dimY > 5 (see 1.1
below).

Theorem C. Let f : X → Y be a surjective morphism of smooth projective varieties, with

dimY = n. Suppose f is smooth outside of a closed subvariety B ⊂ Y . Assume that for some

k > 1, ω⊗kX is relatively free over Y \ B, and let L be an ample line bundle on Y . Then the

sheaf

f∗ω
⊗k
X ⊗ L

⊗l

is generated by global sections at y, for all y /∈ B for all l > k(N + 1).

Remark 1.2. Note, for instance, that this applies when f : X → Y is a projective surjective
morphism with generalised Calabi-Yau �bres (i.e. ωF = OF for any smooth �bre F of f),
or with �bres having nef and big canonical bundle (i.e. they are minimal varieties of general
type). Indeed, in the second case there is an integer s � 0 such that f∗f∗ω

⊗s
X → ω⊗sX is

surjective (see for instance [Fuj09, Theorem 1.3]).

In particular, if f is smooth, i.e. B = ∅, Theorem C solves Conjecture 1.1 for the pluri-
canonical bundles that are relatively globally generated, in dimX 6 4 and more generally
with Angehrn-Siu type bound.

1.1. A Discussion on Recent ResultsA Discussion on Recent Results. Since the �rst draft of this manuscript, several papers
have signi�cantly improved the results in this paper in dimension bigger than 4. In a joint
work with Murayama [DM19], using the weak positivity of f∗OY (k(KX/Y + ∆)), the author

proved e�ective global generation at general points with a bound of l > k(n + 1) + n2 − n
for log-canonical pairs. In the same paper and also in a work of Iwai [Iwa17], slightly better
quadratic bound was shown for klt Q-pairs, improving the results of the current paper in high
dimensions. In the situation of Theorem C, Iwai showed this generation at regular values
without any assumptions on relative freeness of ω⊗kX , improving a similar statement by Deng
[Den17]. The algebraic methods in this paper rely on Kawamata's arguments in [Kaw02],
which in turn uses the arguments stemming from the work of Bombieri [Bom73], Kawamata
[Kaw84] and Shokurov [Sho85], involving the problem of �nding suitable singular divisors
passing through the point at which one aims to show global generation. This enables us to
obtain the bounds similar to the known cases of the Fujita conjecture. On the other hand,
because of the cyclic cover techniques we use here, we require that the relative base loci of the
pluricanonical bundles behave �nicely� along the �bres. The analytic methods get around this
by directly lifting sections of pluricanonical bundles from the �bres of the map.
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1.2. An E�ective Vanishing TheoremAn E�ective Vanishing Theorem. The proof of Theorem C leads to an e�ective vanishing
theorem (see Theorem 4.1), in case of smooth morphisms, for the pushforwards of pluricanon-
ical bundles that are relatively free. This is in the �avour of [PS14, Theorem 1.7], but with
the global generation assumption on L removed. This vanishing theorem has been improved
in [DM19] for n > 4.

1.3. Proof StrategyProof Strategy. The proof of Theorem A is, in part, inspired by arguments in [PS14,
Theorem 1.4]. However, since we do not assume that L is globally generated, we need to
follow a di�erent path, avoiding Castelnuovo-Mumford regularity. To do this, we need to
argue locally around each point and to appeal to the following local version of Kawamata's
e�ective freeness result (see [Kaw02, Theorem 1.7]), another main source of inspiration for this
paper.

Proposition 1.3. Let f : X → Y be a surjective morphism of smooth projective varieties, with

dimY = n, such that f is smooth outside of a closed subvariety B in Y . Let ∆ be a Q-divisor
on Y with simple normal crossing support and coe�cients in (0, 1) and let H be a semiample

Q-divisor on Y such that there is a Cartier divisor P satisfying

P − (KX + ∆) ∼Q f
∗H.

Fixing a point y ∈ Y \ B, assume moreover that each strata of (X,Supp(∆)) intersects the

�bre above y transversely or not at all. Furthermore, let A be a nef and big line bundle on Y
satisfying An > Nn and Ad ·V > Nd for any irreducible closed subvariety V ⊂ Y of dimension

d that contains y and for N as in Notation 1. Then

f∗OX(P )⊗A
is generated by global sections at y.

Remark 1.4.

(1) When ∆ = 0, H = OY and B is a simple normal crossing divisor, the result is
known for all y ∈ Y . This is Kawamata's freeness result (see Theorem 2.1 below).
Kawamata's proof relies on the existence of an e�ective Q-divisor D ∼Q λA for some
0 < λ < 1, such that the pair (Y,D) has an isolated log canonical singularity at a given
point y ∈ Y . Existence of such divisors is known, when A satis�es the intersection
properties as in the hypothesis of Proposition 1.3 (see [AS95], [Kol97, Theorem 5.8]).
Slightly better bounds are known due to Helmke ([Hel97], [Hel99]). Our methods also
work with N replaced by Helmke's bounds.

(2) The proof proceeds by reducing to the case ∆ = 0 and then to the situation in Kawa-
mata's result i.e. when B has simple normal crossing support. We perform the �rst
reduction using an inductive procedure of removing the coe�cients of the components
of ∆ via Kawamata coverings [Laz04, Theorem 4.1.12]. For details see �2.
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problem and for detecting several mistakes in the earlier versions of the proof. I especially
thank Yajit Jain for helping me sketch the diagram on the right side of Figure 2. I would
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Akash Sengupta, Valentino Tosatti anf Lei Wu for several helpful discussions and motivating
conversations. I would like to extend my gratitute to Takumi Murayama for reading carefully
through an earlier version and thoroughly sending me comments. Lastly, I would like to thank
the anonymous referee for several insightful comments and for the suggestions to improve the
organisation of this paper.
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2. Generalisation of Kawamata's Freeness Result. A key input in the proof of Propo-
sition 1.3 is Kawamata's theorem. We state it here:

Theorem 2.1 ([Kaw02, Theorem 1.7]). Let f : X → Y be a surjective morphism of smooth

projective varieties, with dimY = n, such that f is smooth outside of a simple normal crossing

divisor Σ ⊂ Y . Furthermore, let A be a nef and big line bundle on Y and �xing a point

y ∈ Y assume that, An > Nn and Ad · V > Nd for any irreducible closed subvariety V ⊂ Y of

dimension d that contains y and for N as in Notation 1. Then

f∗ωX ⊗A
is generated by global sections at y.

We are now ready to prove a generic version of the above allowing a simple normal crossing
klt pair.

Proof of Proposition 1.3. Since H is semiample, so is f∗H and therefore by Bertini's theorem
(see Remark III.10.9.2 [Har77] and [Jou83]), we can pick a fractional Q divisor D ∼Q f∗H
with smooth support such that ∆ + D still has simple normal crossings support, Supp(D) is
not contained in the support of the ∆ and intersects the �bre over y transversely or not at all
and ∆ +D has coe�cient in (0, 1). We rename ∆ +D by ∆.

We now proceed inductively by removing the components of ∆.

Step 1. Kawamata Covering of ∆. If ∆ = 0 we move to Step 2.

Otherwise let ∆ = l
kD1 +D2 with l, k ∈ Z>0, l < k and D1 smooth irreducible. We choose

a Bloch-Gieseker cover p : Z → X along D1, so that p∗D1 ∼ kM for some Cartier divisor
(possibly non-e�ective) M on Z and so that the components of p∗∆ and the �bre (f ◦ p)−1(y)
are smooth and intersect each other transversely or not at all [Laz04, Lemma 4.1.11]. Moreover
since p is �at and f is smooth over a neighbourhood around y, we can conclude that there is
a open neighbourhood U around y such that f ◦ p is still smooth over U [Har77, Ex. III.10.2].

Set g = f ◦ p and denote by B ⊂ Y , the branch locus of g. Further note that y /∈ B.
Now, ωX is a direct summand of p∗ωZ via the trace map. Therefore

f∗OX(P )⊗A
is a direct summand of

g∗OZ(KZ + lM + p∗D2)⊗A.
Hence it is enough to show that the latter is generated by global sections at y.

To do this we take the kth cyclic cover q : X1 → Z of p∗D1. The smoothness of the
components of Supp(p∗∆) and of g−1(y), and the intersection properties carry over to Y1,
i.e. (g ◦ q)−1(y) and q∗p∗Di are smooth and intersect each other transversely or not at all
[Laz04, Remark 4.1.8]. Furthermore, g ◦q is still smooth over y, and hence over an open subset
U around y. In other words y is not in the branch locus (denoted B again) of g ◦ q. For the
ease of notation set f1 := g ◦ q. Note that, (see for instance, [EV92, �1])

q∗ωX1
'

k−1⊕
i=0

ωZ (p∗D1 − iM) '
k−1⊕
i=0

ωZ ((k − i)M).

The last isomorphism is due to the fact that p∗D1 ∼ kM . Further, since k > l, the direct sum
on the right hand side contains the term ωZ(lM) when i = k − l.

Therefore it is enough to show that,

f1∗OX1(KY1 + q∗p∗D2)⊗A
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is generated by global sections at y.

Proceeding inductively this way, it is enough to show that

fs∗ωXs
⊗A

is globally generated at y, where fs : Xs → X is the composition of Kawamata covers along
the components of ∆ (here s is the number of components of ∆). We rename fs by f and Xs

by X. We again call the non-smooth locus of fs by B and note that y /∈ B.

Step 2. Base Case of the Induction. Take a birational modi�cation Y ′ of Y such that
µ−1(B)red =: Σ in Y ′, as in the diagram below, is a simple normal crossing divisor and
Y ′ \ Σ ' Y \ Supp(B). In particular, µ is an isomorphism around y. Let X ′ → X be a
resolution of the largest irreducible component of the �bre product Y ′×Y X. The situation is
described in the following commutative diagram and a pictorial illustration.

X ′ X

Y ′ Y

f ′ f
µ

Note that f ′ satis�es the hypothesis of Kawamata's theorem (Theorem 2.1) around µ−1(y).
Indeed, since µ is an isomorphism over a neighbourhood U around y, µ∗A satis�es the inter-
section properties, as in the hypothesis, at the point µ−1(y). Moreover f ′ is smooth outside of
the simple normal crossing divisor Σ. Therefore by Theorem 2.1, we obtain that f ′∗ωX′ ⊗ µ∗A
is generated by global sections at µ−1(y). Additionally we have,

µ∗(f
′
∗ωX′⊗ µ

∗A) ' f∗ωX⊗A.
Therefore the sheaf f∗ωX ⊗A is generated by global sections at y.

�

Remark 2.2 (Local version of Kawamata's theorem). When ∆ = 0 and H = OY , by S¹abo's
Lemma (see e.g. [KK13, Theorem 10.45(1)]), we can choose µ in Step 2 of the above proof
to be an isomorphism outside the simple normal crossing locus of B to obtain a local version
of Kawamata's theorem. Said di�erently, the proof shows that for any morphism f : X → Y
between smooth projective varieties, if y ∈ Y has a Zariski neighbourhood U such that the
morphism f : f−1(U)→ U is smooth outside a simple normal crossing divisor then f∗ωX⊗L⊗l
is globally generated at y, for all l > N + 1 with N as in Notation 1.

3. Proof of the Main Theorems. For its simplistic nature, we �rst include the proof of
Theorem C. Inspired by [PS14], the strategy is to reduce generation problem for pluricanonical
bundles to that of canonical bundles on pairs. We show that such a pair can be carefully chosen,
so it satis�es the properties in the hypothesis of Proposition 1.3.

Proof of Theorem C. Let I ⊆ OX be the the relative base ideal of ω⊗kY , i.e. there is a surjection

f∗f∗ω
⊗k
X →→ I ⊗ ω⊗kX via the adjunction morphism. We �rst take a log resolution µ : X̃ →

X of I , so that µ is an isomorphism outside the cosupport of I and the image of the
adjunction morphism is ω⊗k

X̃
(−E), for an e�ective divisor E with simple normal crossing

support. Renaming X̃ by X, we have the following surjection:

f∗f∗ω
⊗k
X →→ ω⊗kX (−E)
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By the relative freeness of ω⊗kX over Y \B, f(E) ⊂ B.
Fix a point y ∈ Y \ B. We pick a positive integer m which is smallest with the property

that the sheaf f∗ω
⊗k
X ⊗ L⊗m is generated by global sections on U . Then f∗f∗

(
ω⊗kX ⊗ f∗L⊗m

)
is also generated by global sections on f−1(U). Therefore by the surjectivity of the adjunction
morphism, we have

ω⊗kX (−E)⊗ f∗L⊗m

is globally generated on f−1(U). As a consequence, we can pick a divisor D ∈
∣∣ω⊗kX (−E) ⊗

f∗L⊗m
∣∣ such that D is smooth outside of f−1(B) and intersects the �bre f−1(y) transversely.

After replacing X with a birational modi�cation that is an isomorphism outside of f−1(B),
we may assume that D = D′+F , where D′ is smooth, intersects the �bre f−1(y) transversely
and does not share any component with E. Furthermore, F is supported on f−1(B) and
D′ + F + E has simple normal crossing support.

We write
kKX +mf∗L ∼ D′ + F + E.

Multiplying both sides by k−1
k and adding KX + lf∗L for any integer l, we can rewrite

kKX + lf∗L ∼Q KX +
k − 1

k
(D′ + F + E) +

(
l − k − 1

k
m
)
f∗L.

Now consider the e�ective divisor E′ :=
⌊
k−1
k (E + F )

⌋
and denote

∆ :=
k − 1

k
(D′ + F + E)− E′.

We can rewrite Q-linear equivalence as

kKX − E′ + lf∗L ∼Q KX + ∆ +
(
l − k − 1

k
m
)
f∗L.

It is now enough to show that

f∗OX
(
KX + ∆ +

(
l − k − 1

k
m
)
f∗L

)
is generated by global sections at y for all l > k−1

k m+N . Indeed, this would imply that the

left hand side of the equation also satis�es similar global generation bounds, i.e. f∗OX
(
kKX−

E′ + lf∗L
)
is globally generated at y for all l > k−1

k m+N . But note that E′ is supported on

f−1(B) and y /∈ B. Therefore the stalks
f∗OX

(
kKX − E′ + lf∗L

)
y
' f∗OX

(
kKX + lf∗L

)
y

are isomorphic. Moreover the global sections of the former sheaf embeds into the global
sections of the latter sheaf. Said di�erently, this would imply that

f∗OX
(
kKX + lf∗L

)
is globally generated on U for all l >

k − 1

k
m+N . From our choice of m, we must have that

m 6 k−1
k m+N + 1. This is the same as m 6 k(N + 1). As a consequence,

f∗ω
⊗k
X ⊗ L

⊗l

is generated by global sections on Y \B for all l > (k − 1)(N + 1) +N + 1 = k(N + 1).

It now remains to show that

f∗OX
(
KX + ∆ +

(
l − k − 1

k
m
)
f∗L

)
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is generated by global sections at y when l − k−1
k m > N . This follows from Proposition 1.3

taking

H :=
(⌈k − 1

k
m

⌉
− k − 1

k
m
)
L

and

A :=
(
l −
⌈
k − 1

k
m

⌉)
L.

Indeed, L is ample,H is semiample and A satis�es the Angehrn-Siu type intersection properties
by the choice of l above. Moreover ∆ has simple normal crossing support with coe�cients in
(0, 1) and its components intersect the �bre f−1(y) transversely or not at all. �

The proof of Theorem A is fairly similar, except due to the lack of nice behaviour of ω⊗kX
over Y \B, one needs to carefully choose the locus U of global generation.

Proof of Theorem A. Following the proof of [PS14, Theorem 1.7], we �rst take a log resolution

µ : X̃ → X of the base ideal of the adjunction morphism f∗f∗OX(P )
π−→ OX(P ) and the pair

(X,∆). Write:

K
X̃
− µ∗(KX + ∆) = Q−N

where Q and N are e�ective Q-divisors with simple normal crossing support, with no common
components, moreover N has coe�cients strictly smaller than 1, and Q is supported on the
exceptional locus. De�ne:

P̃ := µ∗P + k dQe
and

∆̃ := N + dQe −Q.
Then by de�nition,P̃ ∼Q k(K

X̃
+ ∆̃). Moreover, since Q is exceptional, we have the isomor-

phism µ∗OX̃(P̃ ) ' µ∗OX(P ). We rename X̃ by X, P̃ by P and ∆̃ by ∆, so that the image of
the adjunction morphism π is given by OX(P − E), for an e�ective divisor E and so that X
is smooth and the divisor ∆ + E has simple normal crossing support.

Next, the strategy is to �nd a suitable open set U ⊆ Y on which we prove global generation.
For this purpose, write ∆ =

∑
i ai∆i, where ∆i's are the irreducible components of ∆. Let

Ej 's denote the irreducible components of E. Set,

c := k × l.c.m. of the denominators of ai.

Similar to the construction in the proof of Proposition 1.3, we inductively take cth Kawamata
covers of ∆i's and Ej 's and denote the composition of these covers by p : X ′ → X. We choose
these covers so that p∗∆i = c∆′i and p∗Ej = cE′j for irreducible divisors ∆′i and E′j . We

further ensure that p∗(∆ + E) has simple normal crossing support.

Denote by B, the non-smooth locus of f ◦ p. Assign U := Y \ B, consider the following
cartesian diagram:

f−1(U) =: V X

U Y

fV

iV

f

i

and denote C := f−1(B).

Fix y ∈ U . Now, pick a positive integer m which is the smallest with the property that
the sheaf f∗OX(P ) ⊗ L⊗m is generated by global sections at each point on U . Therefore by
adjunction, OX(P −E)⊗ f∗L⊗m is globally generated on V and hence so is p∗

(
OX(P −E)⊗
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f∗L⊗m
)
on X ′ \p−1(C). By Bertini's theorem, we can pick D ∈

∣∣OX(P −E)⊗f∗L⊗m
∣∣ so that

D is smooth outside of C and such that p∗D is also smooth outside p−1(C). We further ensure
that the divisor p∗D intersects the smooth �bre f−1(y) transversely. To simplify notations,
we denote p−1(C) by C again.

We can write:

kP +mf∗L ∼ D + E

By a similar arithmetic as in the proof of Theorem C we obtain,

k
(
KX + ∆

)
∼Q KX + ∆ +

k − 1

k
(D + E)− k − 1

k
mf∗L,

and hence for any integer l,

k
(
KX + ∆

)
+ lf∗L ∼Q KX + ∆ +

k − 1

k
(D + E) +

(
l − k − 1

k
m
)
f∗L.

Now, since E is the relative base locus of the adjunction morphism of OX(P ), for every
e�ective Cartier divisor E′ such that E − E′ is e�ective we have

f∗OX(P − E′) ' f∗OX(P ).

We would like to such integral divisors, E′ so that

∆ +
k − 1

k
E − E′

has coe�cients strictly smaller than 1. We do so as follows. Write

E =
∑
i

si∆i + Ẽ

and

∆ =
∑
i

ai∆i

where Ẽ and ∆ do not have any common component. Note that, by hypothesis, 0 < ai < 1
and si ∈ Z>0. We want to pick non-negative integers bi, such that

0 6 ai +
k − 1

k
si − bi < 1

and

bi 6 si.

Denote by

γi := ai +
k − 1

k
si

and note that γi < 1 + si. We pick bi as follows. For some integer j with 0 6 j 6 si, we can
write si − j + 1 > γi > si − j. Then we pick

bi = si − j.

Now let

E′ :=
∑
i

bi∆i +

⌊
k − 1

k
Ẽ

⌋
.

Then assign

∆̃ := ∆ +
k − 1

k
E − E′ =

∑
i

αi∆̃i
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and note that ∆̃ is a divisor with simple normal crossing support with coe�cients 0 < αi < 1.
Then we rewrite the above Q-linear equivalence of divisors as:

P − E′ + lf∗L ∼Q KX + ∆̃ +
k − 1

k
D +

(
l − k − 1

k
m
)
f∗L.

It is now enough to show that the pushforward of the right hand side of the above Q-linear
equivalence is globally generated at y, for all l >

k − 1

k
m + N . Indeed, in that case the left

hand side would satisfy similar global generation bounds and by the discussion above

f∗OX(P − E′)⊗ L⊗l ' f∗OX(P )⊗ L⊗l.

Said di�erently, this implies that

f∗OX(P )⊗ L⊗l

is globally generated on U for all l >
k − 1

k
m+N . From our choice of m, we must have that

m 6 k−1
k m+N + 1. This is the same as m 6 k(N + 1). Therefore,

f∗OX(P )⊗ L⊗l

is generated by global sections on U for all l > (k − 1)(N + 1) +N + 1 = k(N + 1).

It now remains to show that

f∗OX
(
KX + ∆̃ +

k − 1

k
D +

(
l − k − 1

k
m
)
f∗L

)
is globally generated at y. To do so, we resort to Proposition 1.3. However the divisor

∆̃+ k−1
k D may not satisfy the hypothesis of Proposition 1.3, as D may be quite singular along

C. Therefore we cannot apply Proposition 1.3 directly. Since we are only interested in generic
global generation though, we can get around these problems. The rest of the proof is devoted
to this.

By de�nition, cαi is an integer and by construction, p is a composition of cth Kawamata

coverings of the components ∆̃i's of ∆̃. Following an inductive argument similar to the one in
the proof of Proposition 1.3, we see that

f∗OX
(
KX + ∆̃ +

k − 1

k
D +

(
l − k − 1

k
m
)
f∗L

)
is a direct summand of(

f ◦ p
)
∗OX′

(
KY ′ +

k − 1

k
D′ + (f ◦ p)∗

(
l − k − 1

k
m
)
L
)

where D′ = p∗D. Therefore it is enough to show that the latter is globally generated at y.

We are now almost in the situation of Proposition 1.3, except D′ may still be singular along
p−1(C). We get around this using similar strategy as was used in the proof Theorem C. Let
µ : X ′′ → X ′ be a log resolution of D′ such that µ is an isomorphism outside of p−1(C). Then
write

µ∗D′ = D̃ + F

where D̃ is smooth, intersects the �bre over y transversely and F is supported on µ−1(p−1(C)),
denoted by C again. We replace, X ′′ by X ′, rename the divisor µ∗D′ by D′. Therefore, we
can assume that D′ has simple normal crossing support.
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To deal with the fact that F may not be klt, consider the e�ective Cartier divisor F ′ =⌊
k − 1

k
F

⌋
. Since, Supp(F ′) is contained in the C and y /∈ B, the stalks

(
f ◦ p

)
∗OX′

(
KX′ +

k − 1

k
D′ +

(
l − k − 1

k
m
)

(f ◦ p)∗L
)
y
'(

f ◦ p
)
∗OX′

(
KX′ +

k − 1

k
D′ − F ′ +

(
l − k − 1

k
m
)

(f ◦ p)∗L
)
y

are isomorphic. Moreover the global sections of the latter sheaf embed into the global sections
of the former sheaf.

Letting

∆̃ :=
k − 1

k
D′ − F ′,

it is now enough to show that,(
f ◦ p

)
∗OY ′

(
KY ′ + ∆̃ +

(
l − k − 1

k
m
)

(f ◦ p)∗L
)

is globally generated at y for l >
k − 1

k
m + N . The Q-divisor ∆̃ satis�es the hypothesis in

Proposition 1.3 and the required global generation follows from Proposition 1.3 taking

H :=
(⌈k − 1

k
m

⌉
− k − 1

k
m
)
L

and

A :=
(
l −
⌈
k − 1

k
m

⌉)
L.

�

Remark 3.1. Note that if ∆ itself has simple normal crossing support and the relative base
locus E of OX(k(KX +∆)) is a divisor so that ∆+E also has simple normal crossing support,
then by construction, the loci of generation U in the statement contains the largest open set
in Y , over which f restricted to each strata of (X,∆ + E) is smooth.

4. An E�ective Vanishing Theorem. We deduce a pluricanonical version of Kollár's
vanishing theorem for smooth morphisms satisfying certain properties. The proof essentially
follows directly from the Q-linear equivalences involved in the proof of Theorem C.

Theorem 4.1 (E�ective Vanishing Theorem). Let f : X → Y be a smooth surjective morphism

of smooth projective varieties, with dimY = n. Assume in addition that ω⊗kX is relatively free

for some k > 1, and let L be an ample line bundle on Y . Then,

H i
(
Y, f∗ω

⊗k
X ⊗ L

⊗l
)

= 0

for all i > 0 and l > k(N + 1)−N with N as in Notation 1.

Proof. Since f is smooth, by Theorem C, we know that the sheaf f∗ω
⊗k
X ⊗ L⊗l is globally

generated for all l > k(N + 1). Therefore by the surjectivity of the adjunction morphism

ω⊗kX ⊗ f∗L⊗k(N+1) is globally generated as well. As a consequence, we can pick a smooth

divisor D ∈
∣∣ω⊗kX ⊗ f∗L⊗k(N+1)

∣∣ such that D intersects the �bre f−1(y) transversely .

Write:

kKX + k(N + 1)f∗L ∼ D.
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Multiplying by k−1
k and adding KX + lf∗L for some integer l, we obtain as before

kKX + lf∗L ∼Q KX +
k − 1

k
D +

(
l − (k − 1)(N + 1)

)
f∗L,

for any integer l. By applying Kollár's vanishing theorem [Kol95, Corollary 10.15] on the right
hand side, we get

H i
(
Y, f∗OX

(
KX +

k − 1

k
D +

(
l − (k − 1)(N + 1)

)
f∗L

))
= 0

for all i > 0 and l > (k − 1)(N + 1). Therefore, the left hand side satis�es similar vanishing
properties

H i
(
Y, f∗ω

⊗k
X ⊗ L

⊗l
)

= 0

for all i > 0 and l > k(N + 1)−N �

Remark 4.2. The above bound is replaced in [DM19, Theorem 5.3] by k(n+ 1)− n for all n.
This is an improvement for n > 4.
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